Loading…

Predictors of COVID-19 Infection: A Prevalence Study of Hospitalized Patients

Aim. To find the predictors of coronavirus disease 2019 (COVID-19) in hospitalized patients. Methods. A prevalence study compared the characteristics of COVID-19 patients with non-COVID-19 patients from January 19, 2020, to February 18, 2020, during the COVID-19 outbreak. Laboratory test results and...

Full description

Saved in:
Bibliographic Details
Published in:The Canadian journal of infectious diseases & medical microbiology 2021-10, Vol.2021, p.6213450-8
Main Authors: Tu, Huilan, Zhao, Hong, Su, Junwei, Wu, Wenrui, Xu, Kaijin, Hu, Jianhua, Zhang, Xuan, Yang, Meifang, Sheng, Jifang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c639t-e7a5869a633426ada061c683f0fea76689266bfa863dc70a8684048bd8bbfd0f3
cites cdi_FETCH-LOGICAL-c639t-e7a5869a633426ada061c683f0fea76689266bfa863dc70a8684048bd8bbfd0f3
container_end_page 8
container_issue
container_start_page 6213450
container_title The Canadian journal of infectious diseases & medical microbiology
container_volume 2021
creator Tu, Huilan
Zhao, Hong
Su, Junwei
Wu, Wenrui
Xu, Kaijin
Hu, Jianhua
Zhang, Xuan
Yang, Meifang
Sheng, Jifang
description Aim. To find the predictors of coronavirus disease 2019 (COVID-19) in hospitalized patients. Methods. A prevalence study compared the characteristics of COVID-19 patients with non-COVID-19 patients from January 19, 2020, to February 18, 2020, during the COVID-19 outbreak. Laboratory test results and pulmonary chest imaging of confirmed COVID-19 and non-COVID-19 patients were collected by retrieving medical records in our center. Results. 96 COVID-19 patients and 122 non-COVID-19 patients were enrolled in this study. COVID-19 patients were older (53 vs. 39; P 
doi_str_mv 10.1155/2021/6213450
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_84de39fddd604a7081f1a478b0b4b2f3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814186165</galeid><doaj_id>oai_doaj_org_article_84de39fddd604a7081f1a478b0b4b2f3</doaj_id><sourcerecordid>A814186165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639t-e7a5869a633426ada061c683f0fea76689266bfa863dc70a8684048bd8bbfd0f3</originalsourceid><addsrcrecordid>eNp9kttrFDEUhwdRbK2--SyDBRF02twn8UFY1ksXKi14eQ2ZXHazzE62yUyl_vVmumvdlSJ5SDj58h1y-BXFcwhOIKT0FAEETxmCmFDwoDiEAvIKEoEf5nMNUSUoRgfFk5SWAODM1Y-LA0yYgBiyw-LLZbTG6z7EVAZXTi9-zD5UUJSzzlnd-9C9KydlZq5Vaztty6_9YG5G8iykte9V639ZU16q3tuuT0-LR061yT7b7kfF908fv03PqvOLz7Pp5LzSDIu-srWinAnFMCaIKaMAg5px7ICzqmaMC8RY4xRn2Oga5J0TQHhjeNM4Axw-KmYbrwlqKdfRr1S8kUF5eVsIcS5V7L1ureTEWCycMYYBomrAoYOK1LwBDWmQw9n1fuNaD83KGp3_EVW7J92_6fxCzsO15BRxBkkWvN4KYrgabOrlyidt21Z1NgxJIsqpQEjUI3r8D7oMQ-zyqG4pKAjl9V9qnocufedC7qtHqZxwSGDuymimXt5D6bW_krvQyT1QXsauvA6ddT7X96yvdh4srGr7RQrtMEYh7YNvN6COIaVo3d3EIJBjMOUYTLkNZsZf7E75Dv6TxAy82QAL3xn10_9f9xs7XuUo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585194587</pqid></control><display><type>article</type><title>Predictors of COVID-19 Infection: A Prevalence Study of Hospitalized Patients</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Tu, Huilan ; Zhao, Hong ; Su, Junwei ; Wu, Wenrui ; Xu, Kaijin ; Hu, Jianhua ; Zhang, Xuan ; Yang, Meifang ; Sheng, Jifang</creator><contributor>Bautista, Marcos Christian ; Marcos Christian Bautista</contributor><creatorcontrib>Tu, Huilan ; Zhao, Hong ; Su, Junwei ; Wu, Wenrui ; Xu, Kaijin ; Hu, Jianhua ; Zhang, Xuan ; Yang, Meifang ; Sheng, Jifang ; Bautista, Marcos Christian ; Marcos Christian Bautista</creatorcontrib><description>Aim. To find the predictors of coronavirus disease 2019 (COVID-19) in hospitalized patients. Methods. A prevalence study compared the characteristics of COVID-19 patients with non-COVID-19 patients from January 19, 2020, to February 18, 2020, during the COVID-19 outbreak. Laboratory test results and pulmonary chest imaging of confirmed COVID-19 and non-COVID-19 patients were collected by retrieving medical records in our center. Results. 96 COVID-19 patients and 122 non-COVID-19 patients were enrolled in this study. COVID-19 patients were older (53 vs. 39; P &lt; 0.001) and had higher body mass index (BMI) than non-COVID-19 group (24.21 ± 3.51 vs. 23.00 ± 3.27, P = 0.011); however, differences in gender were not observed between the two groups. Logistic regression analysis showed that exposure history (OR: 23.34, P &lt; 0.001), rhinorrhea (odds radio (OR): 0.12, P = 0.006), alanine aminotransferase (ALT) (OR: 1.03, P = 0.049), lactate dehydrogenase (LDH) (OR: 1.01, P = 0.020), lymphocyte (OR: 0.27, P = 0.007), and bilateral involvement on chest CT imaging (OR: 23.01, P &lt; 0.001) were independent risk factors for COVID-19. Moreover, bilateral involvement on chest CT imaging (AUC = 0.904, P &lt; 0.001) had significantly higher AUC than others in predicting COVID-19. Conclusions. Exposure history, elevated ALT and LDH, absence of rhinorrhea, lymphopenia, and bilateral involvement on chest CT imaging provide robust evidence for the diagnosis of COVID-19, especially in resource-limited conditions where nucleic acid detection is not readily available.</description><identifier>ISSN: 1712-9532</identifier><identifier>EISSN: 1918-1493</identifier><identifier>DOI: 10.1155/2021/6213450</identifier><identifier>PMID: 34691316</identifier><language>eng</language><publisher>Egypt: Hindawi</publisher><subject>Alanine ; Alanine transaminase ; Body mass index ; Body size ; Cardiovascular disease ; Chest ; China ; Chronic obstructive pulmonary disease ; Comparative analysis ; Computed tomography ; Coronaviruses ; COVID-19 ; CT imaging ; Dehydrogenases ; Diabetes ; Epidemics ; Epidemiology ; Health aspects ; Hospital patients ; Hospitals ; Hypertension ; Infections ; Infectious diseases ; L-Lactate dehydrogenase ; Laboratories ; Laboratory tests ; Lactate dehydrogenase ; Lactic acid ; Liver diseases ; Lymphocytes ; Lymphopenia ; Medical imaging ; Medical records ; Medical research ; Medicine, Experimental ; Nose ; Nucleic acids ; Patients ; Pneumonia ; Polymerase chain reaction ; Prevalence studies (Epidemiology) ; Regression analysis ; Risk analysis ; Risk factors ; Severe acute respiratory syndrome coronavirus 2 ; Software ; Statistics ; Viral diseases</subject><ispartof>The Canadian journal of infectious diseases &amp; medical microbiology, 2021-10, Vol.2021, p.6213450-8</ispartof><rights>Copyright © 2021 Huilan Tu et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Huilan Tu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Huilan Tu et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c639t-e7a5869a633426ada061c683f0fea76689266bfa863dc70a8684048bd8bbfd0f3</citedby><cites>FETCH-LOGICAL-c639t-e7a5869a633426ada061c683f0fea76689266bfa863dc70a8684048bd8bbfd0f3</cites><orcidid>0000-0003-0732-1555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2585194587/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2585194587?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34691316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bautista, Marcos Christian</contributor><contributor>Marcos Christian Bautista</contributor><creatorcontrib>Tu, Huilan</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><creatorcontrib>Su, Junwei</creatorcontrib><creatorcontrib>Wu, Wenrui</creatorcontrib><creatorcontrib>Xu, Kaijin</creatorcontrib><creatorcontrib>Hu, Jianhua</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Yang, Meifang</creatorcontrib><creatorcontrib>Sheng, Jifang</creatorcontrib><title>Predictors of COVID-19 Infection: A Prevalence Study of Hospitalized Patients</title><title>The Canadian journal of infectious diseases &amp; medical microbiology</title><addtitle>Can J Infect Dis Med Microbiol</addtitle><description>Aim. To find the predictors of coronavirus disease 2019 (COVID-19) in hospitalized patients. Methods. A prevalence study compared the characteristics of COVID-19 patients with non-COVID-19 patients from January 19, 2020, to February 18, 2020, during the COVID-19 outbreak. Laboratory test results and pulmonary chest imaging of confirmed COVID-19 and non-COVID-19 patients were collected by retrieving medical records in our center. Results. 96 COVID-19 patients and 122 non-COVID-19 patients were enrolled in this study. COVID-19 patients were older (53 vs. 39; P &lt; 0.001) and had higher body mass index (BMI) than non-COVID-19 group (24.21 ± 3.51 vs. 23.00 ± 3.27, P = 0.011); however, differences in gender were not observed between the two groups. Logistic regression analysis showed that exposure history (OR: 23.34, P &lt; 0.001), rhinorrhea (odds radio (OR): 0.12, P = 0.006), alanine aminotransferase (ALT) (OR: 1.03, P = 0.049), lactate dehydrogenase (LDH) (OR: 1.01, P = 0.020), lymphocyte (OR: 0.27, P = 0.007), and bilateral involvement on chest CT imaging (OR: 23.01, P &lt; 0.001) were independent risk factors for COVID-19. Moreover, bilateral involvement on chest CT imaging (AUC = 0.904, P &lt; 0.001) had significantly higher AUC than others in predicting COVID-19. Conclusions. Exposure history, elevated ALT and LDH, absence of rhinorrhea, lymphopenia, and bilateral involvement on chest CT imaging provide robust evidence for the diagnosis of COVID-19, especially in resource-limited conditions where nucleic acid detection is not readily available.</description><subject>Alanine</subject><subject>Alanine transaminase</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cardiovascular disease</subject><subject>Chest</subject><subject>China</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Comparative analysis</subject><subject>Computed tomography</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>CT imaging</subject><subject>Dehydrogenases</subject><subject>Diabetes</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Health aspects</subject><subject>Hospital patients</subject><subject>Hospitals</subject><subject>Hypertension</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>L-Lactate dehydrogenase</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Liver diseases</subject><subject>Lymphocytes</subject><subject>Lymphopenia</subject><subject>Medical imaging</subject><subject>Medical records</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Nose</subject><subject>Nucleic acids</subject><subject>Patients</subject><subject>Pneumonia</subject><subject>Polymerase chain reaction</subject><subject>Prevalence studies (Epidemiology)</subject><subject>Regression analysis</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Software</subject><subject>Statistics</subject><subject>Viral diseases</subject><issn>1712-9532</issn><issn>1918-1493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kttrFDEUhwdRbK2--SyDBRF02twn8UFY1ksXKi14eQ2ZXHazzE62yUyl_vVmumvdlSJ5SDj58h1y-BXFcwhOIKT0FAEETxmCmFDwoDiEAvIKEoEf5nMNUSUoRgfFk5SWAODM1Y-LA0yYgBiyw-LLZbTG6z7EVAZXTi9-zD5UUJSzzlnd-9C9KydlZq5Vaztty6_9YG5G8iykte9V639ZU16q3tuuT0-LR061yT7b7kfF908fv03PqvOLz7Pp5LzSDIu-srWinAnFMCaIKaMAg5px7ICzqmaMC8RY4xRn2Oga5J0TQHhjeNM4Axw-KmYbrwlqKdfRr1S8kUF5eVsIcS5V7L1ureTEWCycMYYBomrAoYOK1LwBDWmQw9n1fuNaD83KGp3_EVW7J92_6fxCzsO15BRxBkkWvN4KYrgabOrlyidt21Z1NgxJIsqpQEjUI3r8D7oMQ-zyqG4pKAjl9V9qnocufedC7qtHqZxwSGDuymimXt5D6bW_krvQyT1QXsauvA6ddT7X96yvdh4srGr7RQrtMEYh7YNvN6COIaVo3d3EIJBjMOUYTLkNZsZf7E75Dv6TxAy82QAL3xn10_9f9xs7XuUo</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Tu, Huilan</creator><creator>Zhao, Hong</creator><creator>Su, Junwei</creator><creator>Wu, Wenrui</creator><creator>Xu, Kaijin</creator><creator>Hu, Jianhua</creator><creator>Zhang, Xuan</creator><creator>Yang, Meifang</creator><creator>Sheng, Jifang</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0732-1555</orcidid></search><sort><creationdate>20211013</creationdate><title>Predictors of COVID-19 Infection: A Prevalence Study of Hospitalized Patients</title><author>Tu, Huilan ; Zhao, Hong ; Su, Junwei ; Wu, Wenrui ; Xu, Kaijin ; Hu, Jianhua ; Zhang, Xuan ; Yang, Meifang ; Sheng, Jifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639t-e7a5869a633426ada061c683f0fea76689266bfa863dc70a8684048bd8bbfd0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alanine</topic><topic>Alanine transaminase</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cardiovascular disease</topic><topic>Chest</topic><topic>China</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Comparative analysis</topic><topic>Computed tomography</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>CT imaging</topic><topic>Dehydrogenases</topic><topic>Diabetes</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Health aspects</topic><topic>Hospital patients</topic><topic>Hospitals</topic><topic>Hypertension</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>L-Lactate dehydrogenase</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Liver diseases</topic><topic>Lymphocytes</topic><topic>Lymphopenia</topic><topic>Medical imaging</topic><topic>Medical records</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Nose</topic><topic>Nucleic acids</topic><topic>Patients</topic><topic>Pneumonia</topic><topic>Polymerase chain reaction</topic><topic>Prevalence studies (Epidemiology)</topic><topic>Regression analysis</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Software</topic><topic>Statistics</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Huilan</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><creatorcontrib>Su, Junwei</creatorcontrib><creatorcontrib>Wu, Wenrui</creatorcontrib><creatorcontrib>Xu, Kaijin</creatorcontrib><creatorcontrib>Hu, Jianhua</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Yang, Meifang</creatorcontrib><creatorcontrib>Sheng, Jifang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business &amp; Current Affairs Database</collection><collection>Canadian Business &amp; Current Affairs Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Canadian journal of infectious diseases &amp; medical microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Huilan</au><au>Zhao, Hong</au><au>Su, Junwei</au><au>Wu, Wenrui</au><au>Xu, Kaijin</au><au>Hu, Jianhua</au><au>Zhang, Xuan</au><au>Yang, Meifang</au><au>Sheng, Jifang</au><au>Bautista, Marcos Christian</au><au>Marcos Christian Bautista</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictors of COVID-19 Infection: A Prevalence Study of Hospitalized Patients</atitle><jtitle>The Canadian journal of infectious diseases &amp; medical microbiology</jtitle><addtitle>Can J Infect Dis Med Microbiol</addtitle><date>2021-10-13</date><risdate>2021</risdate><volume>2021</volume><spage>6213450</spage><epage>8</epage><pages>6213450-8</pages><issn>1712-9532</issn><eissn>1918-1493</eissn><abstract>Aim. To find the predictors of coronavirus disease 2019 (COVID-19) in hospitalized patients. Methods. A prevalence study compared the characteristics of COVID-19 patients with non-COVID-19 patients from January 19, 2020, to February 18, 2020, during the COVID-19 outbreak. Laboratory test results and pulmonary chest imaging of confirmed COVID-19 and non-COVID-19 patients were collected by retrieving medical records in our center. Results. 96 COVID-19 patients and 122 non-COVID-19 patients were enrolled in this study. COVID-19 patients were older (53 vs. 39; P &lt; 0.001) and had higher body mass index (BMI) than non-COVID-19 group (24.21 ± 3.51 vs. 23.00 ± 3.27, P = 0.011); however, differences in gender were not observed between the two groups. Logistic regression analysis showed that exposure history (OR: 23.34, P &lt; 0.001), rhinorrhea (odds radio (OR): 0.12, P = 0.006), alanine aminotransferase (ALT) (OR: 1.03, P = 0.049), lactate dehydrogenase (LDH) (OR: 1.01, P = 0.020), lymphocyte (OR: 0.27, P = 0.007), and bilateral involvement on chest CT imaging (OR: 23.01, P &lt; 0.001) were independent risk factors for COVID-19. Moreover, bilateral involvement on chest CT imaging (AUC = 0.904, P &lt; 0.001) had significantly higher AUC than others in predicting COVID-19. Conclusions. Exposure history, elevated ALT and LDH, absence of rhinorrhea, lymphopenia, and bilateral involvement on chest CT imaging provide robust evidence for the diagnosis of COVID-19, especially in resource-limited conditions where nucleic acid detection is not readily available.</abstract><cop>Egypt</cop><pub>Hindawi</pub><pmid>34691316</pmid><doi>10.1155/2021/6213450</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0732-1555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1712-9532
ispartof The Canadian journal of infectious diseases & medical microbiology, 2021-10, Vol.2021, p.6213450-8
issn 1712-9532
1918-1493
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_84de39fddd604a7081f1a478b0b4b2f3
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access; PubMed Central
subjects Alanine
Alanine transaminase
Body mass index
Body size
Cardiovascular disease
Chest
China
Chronic obstructive pulmonary disease
Comparative analysis
Computed tomography
Coronaviruses
COVID-19
CT imaging
Dehydrogenases
Diabetes
Epidemics
Epidemiology
Health aspects
Hospital patients
Hospitals
Hypertension
Infections
Infectious diseases
L-Lactate dehydrogenase
Laboratories
Laboratory tests
Lactate dehydrogenase
Lactic acid
Liver diseases
Lymphocytes
Lymphopenia
Medical imaging
Medical records
Medical research
Medicine, Experimental
Nose
Nucleic acids
Patients
Pneumonia
Polymerase chain reaction
Prevalence studies (Epidemiology)
Regression analysis
Risk analysis
Risk factors
Severe acute respiratory syndrome coronavirus 2
Software
Statistics
Viral diseases
title Predictors of COVID-19 Infection: A Prevalence Study of Hospitalized Patients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictors%20of%20COVID-19%20Infection:%20A%20Prevalence%20Study%20of%20Hospitalized%20Patients&rft.jtitle=The%20Canadian%20journal%20of%20infectious%20diseases%20&%20medical%20microbiology&rft.au=Tu,%20Huilan&rft.date=2021-10-13&rft.volume=2021&rft.spage=6213450&rft.epage=8&rft.pages=6213450-8&rft.issn=1712-9532&rft.eissn=1918-1493&rft_id=info:doi/10.1155/2021/6213450&rft_dat=%3Cgale_doaj_%3EA814186165%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c639t-e7a5869a633426ada061c683f0fea76689266bfa863dc70a8684048bd8bbfd0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585194587&rft_id=info:pmid/34691316&rft_galeid=A814186165&rfr_iscdi=true