Loading…

Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2

Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional va...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-04, Vol.15 (1), p.3278-3278, Article 3278
Main Authors: Lv, Xiaowei, Lv, Hualiang, Huang, Yalei, Zhang, Ruixuan, Qin, Guanhua, Dong, Yihui, Liu, Min, Pei, Ke, Cao, Guixin, Zhang, Jincang, Lai, Yuxiang, Che, Renchao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3
container_end_page 3278
container_issue 1
container_start_page 3278
container_title Nature communications
container_volume 15
creator Lv, Xiaowei
Lv, Hualiang
Huang, Yalei
Zhang, Ruixuan
Qin, Guanhua
Dong, Yihui
Liu, Min
Pei, Ke
Cao, Guixin
Zhang, Jincang
Lai, Yuxiang
Che, Renchao
description Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe 3 GaTe 2 . Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature. Most 2D magnets support only a single skyrmion phase. Here, the authors observe two distinct topological phases: Bloch and hybrid skyrmions, with high thermostability in the room-temperature ferromagnet Fe 3 GaTe 2 .
doi_str_mv 10.1038/s41467-024-47579-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_85099f60677b498abd6f8b253c1892c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85099f60677b498abd6f8b253c1892c6</doaj_id><sourcerecordid>3039629676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhaMKRKvSF2AViQ2btPa1458VQoX-SJXYzN5ynJupp0k82A6ob4-nqQplgTe27O9-OrJOVX2g5JwSpi4Sp1zIhgBvuGylbvRRdQKE04ZKYG_-Oh9XZyntSFlMU8X5u-qYKQGSSXFSbb76lP3scp0eHuPkw1zv723CVNtcxxCmOuO0x2jzErH2c51_hab3E86psHasB4wxTHY7Y66vkF3bDcL76u1gx4Rnz_tptbn6trm8ae6-X99efrlrHBc6N9L2rmUgrZKgnQVBS76-I0Riixy5FVIplNo51emhA645lV0LAyiN4Nhpdbtq-2B3Zh_9ZOOjCdabp4sQt8bG7N2IRrVE60EQIWXHtbJdLwbVQcscVRqcKK7Pq2u_dBP2Ducc7fhK-vpl9vdmG34aSgnQlkMxfHo2xPBjwZTN5JPDcbQzhiUZRjhhQCRvC_rxH3QXllh-80AxLUALeYgEK-ViSCni8JKGEnPogFk7YEoHzFMHjC5DbB1KBZ63GP-o_zP1GwuZsiU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039629676</pqid></control><display><type>article</type><title>Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lv, Xiaowei ; Lv, Hualiang ; Huang, Yalei ; Zhang, Ruixuan ; Qin, Guanhua ; Dong, Yihui ; Liu, Min ; Pei, Ke ; Cao, Guixin ; Zhang, Jincang ; Lai, Yuxiang ; Che, Renchao</creator><creatorcontrib>Lv, Xiaowei ; Lv, Hualiang ; Huang, Yalei ; Zhang, Ruixuan ; Qin, Guanhua ; Dong, Yihui ; Liu, Min ; Pei, Ke ; Cao, Guixin ; Zhang, Jincang ; Lai, Yuxiang ; Che, Renchao</creatorcontrib><description>Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe 3 GaTe 2 . Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature. Most 2D magnets support only a single skyrmion phase. Here, the authors observe two distinct topological phases: Bloch and hybrid skyrmions, with high thermostability in the room-temperature ferromagnet Fe 3 GaTe 2 .</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-47579-9</identifier><identifier>PMID: 38627376</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/143 ; 639/301/119/2793 ; 639/301/119/997 ; Coexistence ; Electrons ; Ferromagnetism ; Humanities and Social Sciences ; Hypothetical particles ; Magnetic fields ; Magnetism ; Magnets ; Microscopy ; multidisciplinary ; Particle theory ; Phases ; R&amp;D ; Racetracks ; Research &amp; development ; Room temperature ; Science ; Science (multidisciplinary) ; Temperature ; Thermal stability ; Topology</subject><ispartof>Nature communications, 2024-04, Vol.15 (1), p.3278-3278, Article 3278</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3</cites><orcidid>0000-0002-6583-7114 ; 0000-0002-9252-1158 ; 0000-0002-5150-3949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3039629676/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3039629676?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Lv, Hualiang</creatorcontrib><creatorcontrib>Huang, Yalei</creatorcontrib><creatorcontrib>Zhang, Ruixuan</creatorcontrib><creatorcontrib>Qin, Guanhua</creatorcontrib><creatorcontrib>Dong, Yihui</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Pei, Ke</creatorcontrib><creatorcontrib>Cao, Guixin</creatorcontrib><creatorcontrib>Zhang, Jincang</creatorcontrib><creatorcontrib>Lai, Yuxiang</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><title>Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe 3 GaTe 2 . Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature. Most 2D magnets support only a single skyrmion phase. Here, the authors observe two distinct topological phases: Bloch and hybrid skyrmions, with high thermostability in the room-temperature ferromagnet Fe 3 GaTe 2 .</description><subject>147/143</subject><subject>639/301/119/2793</subject><subject>639/301/119/997</subject><subject>Coexistence</subject><subject>Electrons</subject><subject>Ferromagnetism</subject><subject>Humanities and Social Sciences</subject><subject>Hypothetical particles</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnets</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Particle theory</subject><subject>Phases</subject><subject>R&amp;D</subject><subject>Racetracks</subject><subject>Research &amp; development</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Topology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhaMKRKvSF2AViQ2btPa1458VQoX-SJXYzN5ynJupp0k82A6ob4-nqQplgTe27O9-OrJOVX2g5JwSpi4Sp1zIhgBvuGylbvRRdQKE04ZKYG_-Oh9XZyntSFlMU8X5u-qYKQGSSXFSbb76lP3scp0eHuPkw1zv723CVNtcxxCmOuO0x2jzErH2c51_hab3E86psHasB4wxTHY7Y66vkF3bDcL76u1gx4Rnz_tptbn6trm8ae6-X99efrlrHBc6N9L2rmUgrZKgnQVBS76-I0Riixy5FVIplNo51emhA645lV0LAyiN4Nhpdbtq-2B3Zh_9ZOOjCdabp4sQt8bG7N2IRrVE60EQIWXHtbJdLwbVQcscVRqcKK7Pq2u_dBP2Ducc7fhK-vpl9vdmG34aSgnQlkMxfHo2xPBjwZTN5JPDcbQzhiUZRjhhQCRvC_rxH3QXllh-80AxLUALeYgEK-ViSCni8JKGEnPogFk7YEoHzFMHjC5DbB1KBZ63GP-o_zP1GwuZsiU</recordid><startdate>20240416</startdate><enddate>20240416</enddate><creator>Lv, Xiaowei</creator><creator>Lv, Hualiang</creator><creator>Huang, Yalei</creator><creator>Zhang, Ruixuan</creator><creator>Qin, Guanhua</creator><creator>Dong, Yihui</creator><creator>Liu, Min</creator><creator>Pei, Ke</creator><creator>Cao, Guixin</creator><creator>Zhang, Jincang</creator><creator>Lai, Yuxiang</creator><creator>Che, Renchao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6583-7114</orcidid><orcidid>https://orcid.org/0000-0002-9252-1158</orcidid><orcidid>https://orcid.org/0000-0002-5150-3949</orcidid></search><sort><creationdate>20240416</creationdate><title>Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2</title><author>Lv, Xiaowei ; Lv, Hualiang ; Huang, Yalei ; Zhang, Ruixuan ; Qin, Guanhua ; Dong, Yihui ; Liu, Min ; Pei, Ke ; Cao, Guixin ; Zhang, Jincang ; Lai, Yuxiang ; Che, Renchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>147/143</topic><topic>639/301/119/2793</topic><topic>639/301/119/997</topic><topic>Coexistence</topic><topic>Electrons</topic><topic>Ferromagnetism</topic><topic>Humanities and Social Sciences</topic><topic>Hypothetical particles</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnets</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Particle theory</topic><topic>Phases</topic><topic>R&amp;D</topic><topic>Racetracks</topic><topic>Research &amp; development</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Lv, Hualiang</creatorcontrib><creatorcontrib>Huang, Yalei</creatorcontrib><creatorcontrib>Zhang, Ruixuan</creatorcontrib><creatorcontrib>Qin, Guanhua</creatorcontrib><creatorcontrib>Dong, Yihui</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Pei, Ke</creatorcontrib><creatorcontrib>Cao, Guixin</creatorcontrib><creatorcontrib>Zhang, Jincang</creatorcontrib><creatorcontrib>Lai, Yuxiang</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Xiaowei</au><au>Lv, Hualiang</au><au>Huang, Yalei</au><au>Zhang, Ruixuan</au><au>Qin, Guanhua</au><au>Dong, Yihui</au><au>Liu, Min</au><au>Pei, Ke</au><au>Cao, Guixin</au><au>Zhang, Jincang</au><au>Lai, Yuxiang</au><au>Che, Renchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2024-04-16</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>3278</spage><epage>3278</epage><pages>3278-3278</pages><artnum>3278</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe 3 GaTe 2 . Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature. Most 2D magnets support only a single skyrmion phase. Here, the authors observe two distinct topological phases: Bloch and hybrid skyrmions, with high thermostability in the room-temperature ferromagnet Fe 3 GaTe 2 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38627376</pmid><doi>10.1038/s41467-024-47579-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6583-7114</orcidid><orcidid>https://orcid.org/0000-0002-9252-1158</orcidid><orcidid>https://orcid.org/0000-0002-5150-3949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-04, Vol.15 (1), p.3278-3278, Article 3278
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_85099f60677b498abd6f8b253c1892c6
source PubMed Central (Open Access); Publicly Available Content (ProQuest); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
subjects 147/143
639/301/119/2793
639/301/119/997
Coexistence
Electrons
Ferromagnetism
Humanities and Social Sciences
Hypothetical particles
Magnetic fields
Magnetism
Magnets
Microscopy
multidisciplinary
Particle theory
Phases
R&D
Racetracks
Research & development
Room temperature
Science
Science (multidisciplinary)
Temperature
Thermal stability
Topology
title Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20skyrmion%20phases%20at%20room%20temperature%20in%20two-dimensional%20ferromagnet%20Fe3GaTe2&rft.jtitle=Nature%20communications&rft.au=Lv,%20Xiaowei&rft.date=2024-04-16&rft.volume=15&rft.issue=1&rft.spage=3278&rft.epage=3278&rft.pages=3278-3278&rft.artnum=3278&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-47579-9&rft_dat=%3Cproquest_doaj_%3E3039629676%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3039629676&rft_id=info:pmid/38627376&rfr_iscdi=true