Loading…
Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2
Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional va...
Saved in:
Published in: | Nature communications 2024-04, Vol.15 (1), p.3278-3278, Article 3278 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3 |
container_end_page | 3278 |
container_issue | 1 |
container_start_page | 3278 |
container_title | Nature communications |
container_volume | 15 |
creator | Lv, Xiaowei Lv, Hualiang Huang, Yalei Zhang, Ruixuan Qin, Guanhua Dong, Yihui Liu, Min Pei, Ke Cao, Guixin Zhang, Jincang Lai, Yuxiang Che, Renchao |
description | Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe
3
GaTe
2
. Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature.
Most 2D magnets support only a single skyrmion phase. Here, the authors observe two distinct topological phases: Bloch and hybrid skyrmions, with high thermostability in the room-temperature ferromagnet Fe
3
GaTe
2
. |
doi_str_mv | 10.1038/s41467-024-47579-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_85099f60677b498abd6f8b253c1892c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85099f60677b498abd6f8b253c1892c6</doaj_id><sourcerecordid>3039629676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhaMKRKvSF2AViQ2btPa1458VQoX-SJXYzN5ynJupp0k82A6ob4-nqQplgTe27O9-OrJOVX2g5JwSpi4Sp1zIhgBvuGylbvRRdQKE04ZKYG_-Oh9XZyntSFlMU8X5u-qYKQGSSXFSbb76lP3scp0eHuPkw1zv723CVNtcxxCmOuO0x2jzErH2c51_hab3E86psHasB4wxTHY7Y66vkF3bDcL76u1gx4Rnz_tptbn6trm8ae6-X99efrlrHBc6N9L2rmUgrZKgnQVBS76-I0Riixy5FVIplNo51emhA645lV0LAyiN4Nhpdbtq-2B3Zh_9ZOOjCdabp4sQt8bG7N2IRrVE60EQIWXHtbJdLwbVQcscVRqcKK7Pq2u_dBP2Ducc7fhK-vpl9vdmG34aSgnQlkMxfHo2xPBjwZTN5JPDcbQzhiUZRjhhQCRvC_rxH3QXllh-80AxLUALeYgEK-ViSCni8JKGEnPogFk7YEoHzFMHjC5DbB1KBZ63GP-o_zP1GwuZsiU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039629676</pqid></control><display><type>article</type><title>Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lv, Xiaowei ; Lv, Hualiang ; Huang, Yalei ; Zhang, Ruixuan ; Qin, Guanhua ; Dong, Yihui ; Liu, Min ; Pei, Ke ; Cao, Guixin ; Zhang, Jincang ; Lai, Yuxiang ; Che, Renchao</creator><creatorcontrib>Lv, Xiaowei ; Lv, Hualiang ; Huang, Yalei ; Zhang, Ruixuan ; Qin, Guanhua ; Dong, Yihui ; Liu, Min ; Pei, Ke ; Cao, Guixin ; Zhang, Jincang ; Lai, Yuxiang ; Che, Renchao</creatorcontrib><description>Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe
3
GaTe
2
. Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature.
Most 2D magnets support only a single skyrmion phase. Here, the authors observe two distinct topological phases: Bloch and hybrid skyrmions, with high thermostability in the room-temperature ferromagnet Fe
3
GaTe
2
.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-47579-9</identifier><identifier>PMID: 38627376</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/143 ; 639/301/119/2793 ; 639/301/119/997 ; Coexistence ; Electrons ; Ferromagnetism ; Humanities and Social Sciences ; Hypothetical particles ; Magnetic fields ; Magnetism ; Magnets ; Microscopy ; multidisciplinary ; Particle theory ; Phases ; R&D ; Racetracks ; Research & development ; Room temperature ; Science ; Science (multidisciplinary) ; Temperature ; Thermal stability ; Topology</subject><ispartof>Nature communications, 2024-04, Vol.15 (1), p.3278-3278, Article 3278</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3</cites><orcidid>0000-0002-6583-7114 ; 0000-0002-9252-1158 ; 0000-0002-5150-3949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3039629676/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3039629676?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Lv, Hualiang</creatorcontrib><creatorcontrib>Huang, Yalei</creatorcontrib><creatorcontrib>Zhang, Ruixuan</creatorcontrib><creatorcontrib>Qin, Guanhua</creatorcontrib><creatorcontrib>Dong, Yihui</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Pei, Ke</creatorcontrib><creatorcontrib>Cao, Guixin</creatorcontrib><creatorcontrib>Zhang, Jincang</creatorcontrib><creatorcontrib>Lai, Yuxiang</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><title>Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe
3
GaTe
2
. Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature.
Most 2D magnets support only a single skyrmion phase. Here, the authors observe two distinct topological phases: Bloch and hybrid skyrmions, with high thermostability in the room-temperature ferromagnet Fe
3
GaTe
2
.</description><subject>147/143</subject><subject>639/301/119/2793</subject><subject>639/301/119/997</subject><subject>Coexistence</subject><subject>Electrons</subject><subject>Ferromagnetism</subject><subject>Humanities and Social Sciences</subject><subject>Hypothetical particles</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnets</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Particle theory</subject><subject>Phases</subject><subject>R&D</subject><subject>Racetracks</subject><subject>Research & development</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Topology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhaMKRKvSF2AViQ2btPa1458VQoX-SJXYzN5ynJupp0k82A6ob4-nqQplgTe27O9-OrJOVX2g5JwSpi4Sp1zIhgBvuGylbvRRdQKE04ZKYG_-Oh9XZyntSFlMU8X5u-qYKQGSSXFSbb76lP3scp0eHuPkw1zv723CVNtcxxCmOuO0x2jzErH2c51_hab3E86psHasB4wxTHY7Y66vkF3bDcL76u1gx4Rnz_tptbn6trm8ae6-X99efrlrHBc6N9L2rmUgrZKgnQVBS76-I0Riixy5FVIplNo51emhA645lV0LAyiN4Nhpdbtq-2B3Zh_9ZOOjCdabp4sQt8bG7N2IRrVE60EQIWXHtbJdLwbVQcscVRqcKK7Pq2u_dBP2Ducc7fhK-vpl9vdmG34aSgnQlkMxfHo2xPBjwZTN5JPDcbQzhiUZRjhhQCRvC_rxH3QXllh-80AxLUALeYgEK-ViSCni8JKGEnPogFk7YEoHzFMHjC5DbB1KBZ63GP-o_zP1GwuZsiU</recordid><startdate>20240416</startdate><enddate>20240416</enddate><creator>Lv, Xiaowei</creator><creator>Lv, Hualiang</creator><creator>Huang, Yalei</creator><creator>Zhang, Ruixuan</creator><creator>Qin, Guanhua</creator><creator>Dong, Yihui</creator><creator>Liu, Min</creator><creator>Pei, Ke</creator><creator>Cao, Guixin</creator><creator>Zhang, Jincang</creator><creator>Lai, Yuxiang</creator><creator>Che, Renchao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6583-7114</orcidid><orcidid>https://orcid.org/0000-0002-9252-1158</orcidid><orcidid>https://orcid.org/0000-0002-5150-3949</orcidid></search><sort><creationdate>20240416</creationdate><title>Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2</title><author>Lv, Xiaowei ; Lv, Hualiang ; Huang, Yalei ; Zhang, Ruixuan ; Qin, Guanhua ; Dong, Yihui ; Liu, Min ; Pei, Ke ; Cao, Guixin ; Zhang, Jincang ; Lai, Yuxiang ; Che, Renchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>147/143</topic><topic>639/301/119/2793</topic><topic>639/301/119/997</topic><topic>Coexistence</topic><topic>Electrons</topic><topic>Ferromagnetism</topic><topic>Humanities and Social Sciences</topic><topic>Hypothetical particles</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnets</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Particle theory</topic><topic>Phases</topic><topic>R&D</topic><topic>Racetracks</topic><topic>Research & development</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Lv, Hualiang</creatorcontrib><creatorcontrib>Huang, Yalei</creatorcontrib><creatorcontrib>Zhang, Ruixuan</creatorcontrib><creatorcontrib>Qin, Guanhua</creatorcontrib><creatorcontrib>Dong, Yihui</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Pei, Ke</creatorcontrib><creatorcontrib>Cao, Guixin</creatorcontrib><creatorcontrib>Zhang, Jincang</creatorcontrib><creatorcontrib>Lai, Yuxiang</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Xiaowei</au><au>Lv, Hualiang</au><au>Huang, Yalei</au><au>Zhang, Ruixuan</au><au>Qin, Guanhua</au><au>Dong, Yihui</au><au>Liu, Min</au><au>Pei, Ke</au><au>Cao, Guixin</au><au>Zhang, Jincang</au><au>Lai, Yuxiang</au><au>Che, Renchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2024-04-16</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>3278</spage><epage>3278</epage><pages>3278-3278</pages><artnum>3278</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe
3
GaTe
2
. Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature.
Most 2D magnets support only a single skyrmion phase. Here, the authors observe two distinct topological phases: Bloch and hybrid skyrmions, with high thermostability in the room-temperature ferromagnet Fe
3
GaTe
2
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38627376</pmid><doi>10.1038/s41467-024-47579-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6583-7114</orcidid><orcidid>https://orcid.org/0000-0002-9252-1158</orcidid><orcidid>https://orcid.org/0000-0002-5150-3949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-04, Vol.15 (1), p.3278-3278, Article 3278 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_85099f60677b498abd6f8b253c1892c6 |
source | PubMed Central (Open Access); Publicly Available Content (ProQuest); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 147/143 639/301/119/2793 639/301/119/997 Coexistence Electrons Ferromagnetism Humanities and Social Sciences Hypothetical particles Magnetic fields Magnetism Magnets Microscopy multidisciplinary Particle theory Phases R&D Racetracks Research & development Room temperature Science Science (multidisciplinary) Temperature Thermal stability Topology |
title | Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20skyrmion%20phases%20at%20room%20temperature%20in%20two-dimensional%20ferromagnet%20Fe3GaTe2&rft.jtitle=Nature%20communications&rft.au=Lv,%20Xiaowei&rft.date=2024-04-16&rft.volume=15&rft.issue=1&rft.spage=3278&rft.epage=3278&rft.pages=3278-3278&rft.artnum=3278&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-47579-9&rft_dat=%3Cproquest_doaj_%3E3039629676%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-7adc5327a8729ca261918db007e5e4e4a6788e79cc8b9fb249417b52f289e2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3039629676&rft_id=info:pmid/38627376&rfr_iscdi=true |