Loading…

A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors

Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparro...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-03, Vol.14 (5), p.1328
Main Authors: Zhou, Jianguo, Wang, Shiguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493
cites cdi_FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493
container_end_page
container_issue 5
container_start_page 1328
container_title Energies (Basel)
container_volume 14
creator Zhou, Jianguo
Wang, Shiguo
description Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.
doi_str_mv 10.3390/en14051328
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8510613317a042bcbe6ec9f168a35139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8510613317a042bcbe6ec9f168a35139</doaj_id><sourcerecordid>2497410524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITGMXfkEkbkiFuEm75jgGg0lDIAHnKB_ulqlrRtId-PdkGwJ8eH62np4tO8sugd4wJugtdsBpCayoT7IBCFHlQMfs9B8_z0YxrmkKxoAxNsiaCZmqoH1HXoMzmBCtM71LjWdvsSV3KqIlqexXSN7Q-M6q8EXuE9tsfXQH6aRd-uD61YaozpJ517Q77IzrlmSmTO9DvMjOGtVGHP3kYfYxe3ifPuWLl8f5dLLIDaugzxMUUHGD2iirkFHDyxIBCgG21rpQlRHCNEJxS2kFquKgWaHrmiI2mgs2zOZHX-vVWm6D26RlpVdOHho-LKUKvTMtyrqEZJHuMFaUF9porNCIBqpasXTEvdfV0Wsb_OcOYy_Xfhe6tL4suBhzoGXBk-r6qDLBxxiw-Z0KVO7fIv_ewr4BU_d-Gg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497410524</pqid></control><display><type>article</type><title>A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors</title><source>Publicly Available Content Database</source><creator>Zhou, Jianguo ; Wang, Shiguo</creator><creatorcontrib>Zhou, Jianguo ; Wang, Shiguo</creatorcontrib><description>Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14051328</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Bandwidths ; Carbon dioxide ; carbon price ; Crude oil ; Decomposition ; Emissions ; Emissions control ; Emissions trading ; empirical mode decomposition ; Global economy ; Global warming ; kernel extreme learning machine ; Learning algorithms ; Neural networks ; Prediction models ; Prices ; Search algorithms ; secondary decomposition ; sparrow search algorithm ; Stochastic models ; Time series ; variational mode decomposition</subject><ispartof>Energies (Basel), 2021-03, Vol.14 (5), p.1328</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493</citedby><cites>FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2497410524/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2497410524?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhou, Jianguo</creatorcontrib><creatorcontrib>Wang, Shiguo</creatorcontrib><title>A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors</title><title>Energies (Basel)</title><description>Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Carbon dioxide</subject><subject>carbon price</subject><subject>Crude oil</subject><subject>Decomposition</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Emissions trading</subject><subject>empirical mode decomposition</subject><subject>Global economy</subject><subject>Global warming</subject><subject>kernel extreme learning machine</subject><subject>Learning algorithms</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Prices</subject><subject>Search algorithms</subject><subject>secondary decomposition</subject><subject>sparrow search algorithm</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>variational mode decomposition</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITGMXfkEkbkiFuEm75jgGg0lDIAHnKB_ulqlrRtId-PdkGwJ8eH62np4tO8sugd4wJugtdsBpCayoT7IBCFHlQMfs9B8_z0YxrmkKxoAxNsiaCZmqoH1HXoMzmBCtM71LjWdvsSV3KqIlqexXSN7Q-M6q8EXuE9tsfXQH6aRd-uD61YaozpJ517Q77IzrlmSmTO9DvMjOGtVGHP3kYfYxe3ifPuWLl8f5dLLIDaugzxMUUHGD2iirkFHDyxIBCgG21rpQlRHCNEJxS2kFquKgWaHrmiI2mgs2zOZHX-vVWm6D26RlpVdOHho-LKUKvTMtyrqEZJHuMFaUF9porNCIBqpasXTEvdfV0Wsb_OcOYy_Xfhe6tL4suBhzoGXBk-r6qDLBxxiw-Z0KVO7fIv_ewr4BU_d-Gg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhou, Jianguo</creator><creator>Wang, Shiguo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210301</creationdate><title>A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors</title><author>Zhou, Jianguo ; Wang, Shiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Carbon dioxide</topic><topic>carbon price</topic><topic>Crude oil</topic><topic>Decomposition</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Emissions trading</topic><topic>empirical mode decomposition</topic><topic>Global economy</topic><topic>Global warming</topic><topic>kernel extreme learning machine</topic><topic>Learning algorithms</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Prices</topic><topic>Search algorithms</topic><topic>secondary decomposition</topic><topic>sparrow search algorithm</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>variational mode decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jianguo</creatorcontrib><creatorcontrib>Wang, Shiguo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jianguo</au><au>Wang, Shiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors</atitle><jtitle>Energies (Basel)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>1328</spage><pages>1328-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14051328</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2021-03, Vol.14 (5), p.1328
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8510613317a042bcbe6ec9f168a35139
source Publicly Available Content Database
subjects Algorithms
Bandwidths
Carbon dioxide
carbon price
Crude oil
Decomposition
Emissions
Emissions control
Emissions trading
empirical mode decomposition
Global economy
Global warming
kernel extreme learning machine
Learning algorithms
Neural networks
Prediction models
Prices
Search algorithms
secondary decomposition
sparrow search algorithm
Stochastic models
Time series
variational mode decomposition
title A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Carbon%20Price%20Prediction%20Model%20Based%20on%20the%20Secondary%20Decomposition%20Algorithm%20and%20Influencing%20Factors&rft.jtitle=Energies%20(Basel)&rft.au=Zhou,%20Jianguo&rft.date=2021-03-01&rft.volume=14&rft.issue=5&rft.spage=1328&rft.pages=1328-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14051328&rft_dat=%3Cproquest_doaj_%3E2497410524%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2497410524&rft_id=info:pmid/&rfr_iscdi=true