Loading…
A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors
Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparro...
Saved in:
Published in: | Energies (Basel) 2021-03, Vol.14 (5), p.1328 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493 |
container_end_page | |
container_issue | 5 |
container_start_page | 1328 |
container_title | Energies (Basel) |
container_volume | 14 |
creator | Zhou, Jianguo Wang, Shiguo |
description | Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity. |
doi_str_mv | 10.3390/en14051328 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8510613317a042bcbe6ec9f168a35139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8510613317a042bcbe6ec9f168a35139</doaj_id><sourcerecordid>2497410524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITGMXfkEkbkiFuEm75jgGg0lDIAHnKB_ulqlrRtId-PdkGwJ8eH62np4tO8sugd4wJugtdsBpCayoT7IBCFHlQMfs9B8_z0YxrmkKxoAxNsiaCZmqoH1HXoMzmBCtM71LjWdvsSV3KqIlqexXSN7Q-M6q8EXuE9tsfXQH6aRd-uD61YaozpJ517Q77IzrlmSmTO9DvMjOGtVGHP3kYfYxe3ifPuWLl8f5dLLIDaugzxMUUHGD2iirkFHDyxIBCgG21rpQlRHCNEJxS2kFquKgWaHrmiI2mgs2zOZHX-vVWm6D26RlpVdOHho-LKUKvTMtyrqEZJHuMFaUF9porNCIBqpasXTEvdfV0Wsb_OcOYy_Xfhe6tL4suBhzoGXBk-r6qDLBxxiw-Z0KVO7fIv_ewr4BU_d-Gg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497410524</pqid></control><display><type>article</type><title>A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors</title><source>Publicly Available Content Database</source><creator>Zhou, Jianguo ; Wang, Shiguo</creator><creatorcontrib>Zhou, Jianguo ; Wang, Shiguo</creatorcontrib><description>Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14051328</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Bandwidths ; Carbon dioxide ; carbon price ; Crude oil ; Decomposition ; Emissions ; Emissions control ; Emissions trading ; empirical mode decomposition ; Global economy ; Global warming ; kernel extreme learning machine ; Learning algorithms ; Neural networks ; Prediction models ; Prices ; Search algorithms ; secondary decomposition ; sparrow search algorithm ; Stochastic models ; Time series ; variational mode decomposition</subject><ispartof>Energies (Basel), 2021-03, Vol.14 (5), p.1328</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493</citedby><cites>FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2497410524/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2497410524?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhou, Jianguo</creatorcontrib><creatorcontrib>Wang, Shiguo</creatorcontrib><title>A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors</title><title>Energies (Basel)</title><description>Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Carbon dioxide</subject><subject>carbon price</subject><subject>Crude oil</subject><subject>Decomposition</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Emissions trading</subject><subject>empirical mode decomposition</subject><subject>Global economy</subject><subject>Global warming</subject><subject>kernel extreme learning machine</subject><subject>Learning algorithms</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Prices</subject><subject>Search algorithms</subject><subject>secondary decomposition</subject><subject>sparrow search algorithm</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>variational mode decomposition</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITGMXfkEkbkiFuEm75jgGg0lDIAHnKB_ulqlrRtId-PdkGwJ8eH62np4tO8sugd4wJugtdsBpCayoT7IBCFHlQMfs9B8_z0YxrmkKxoAxNsiaCZmqoH1HXoMzmBCtM71LjWdvsSV3KqIlqexXSN7Q-M6q8EXuE9tsfXQH6aRd-uD61YaozpJ517Q77IzrlmSmTO9DvMjOGtVGHP3kYfYxe3ifPuWLl8f5dLLIDaugzxMUUHGD2iirkFHDyxIBCgG21rpQlRHCNEJxS2kFquKgWaHrmiI2mgs2zOZHX-vVWm6D26RlpVdOHho-LKUKvTMtyrqEZJHuMFaUF9porNCIBqpasXTEvdfV0Wsb_OcOYy_Xfhe6tL4suBhzoGXBk-r6qDLBxxiw-Z0KVO7fIv_ewr4BU_d-Gg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhou, Jianguo</creator><creator>Wang, Shiguo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210301</creationdate><title>A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors</title><author>Zhou, Jianguo ; Wang, Shiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Carbon dioxide</topic><topic>carbon price</topic><topic>Crude oil</topic><topic>Decomposition</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Emissions trading</topic><topic>empirical mode decomposition</topic><topic>Global economy</topic><topic>Global warming</topic><topic>kernel extreme learning machine</topic><topic>Learning algorithms</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Prices</topic><topic>Search algorithms</topic><topic>secondary decomposition</topic><topic>sparrow search algorithm</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>variational mode decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jianguo</creatorcontrib><creatorcontrib>Wang, Shiguo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jianguo</au><au>Wang, Shiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors</atitle><jtitle>Energies (Basel)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>1328</spage><pages>1328-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14051328</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2021-03, Vol.14 (5), p.1328 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8510613317a042bcbe6ec9f168a35139 |
source | Publicly Available Content Database |
subjects | Algorithms Bandwidths Carbon dioxide carbon price Crude oil Decomposition Emissions Emissions control Emissions trading empirical mode decomposition Global economy Global warming kernel extreme learning machine Learning algorithms Neural networks Prediction models Prices Search algorithms secondary decomposition sparrow search algorithm Stochastic models Time series variational mode decomposition |
title | A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Carbon%20Price%20Prediction%20Model%20Based%20on%20the%20Secondary%20Decomposition%20Algorithm%20and%20Influencing%20Factors&rft.jtitle=Energies%20(Basel)&rft.au=Zhou,%20Jianguo&rft.date=2021-03-01&rft.volume=14&rft.issue=5&rft.spage=1328&rft.pages=1328-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14051328&rft_dat=%3Cproquest_doaj_%3E2497410524%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-3612164cebcadae30c455e11291d8bb2a6c99cf9a4d0061a641b32b880eefb493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2497410524&rft_id=info:pmid/&rfr_iscdi=true |