Loading…

Automatic identification of charcoal origin based on deep learning

The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learnin...

Full description

Saved in:
Bibliographic Details
Published in:Maderas 2021-01, Vol.23
Main Authors: Rodrigues de Oliveira, Ricardo, Ferreira Rodrigues, Larissa, Mari, João Fernando, Coelho Naldi, Murilo, Gomes Milagres, Emerson, Rocha Vital, Benedito, Oliveira Carneiro, Angélica de Cássia, Breda Binoti, Daniel Henrique, Lopes, Pablo Falco, Garcia Leite, Helio
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63
cites
container_end_page
container_issue
container_start_page
container_title Maderas
container_volume 23
creator Rodrigues de Oliveira, Ricardo
Ferreira Rodrigues, Larissa
Mari, João Fernando
Coelho Naldi, Murilo
Gomes Milagres, Emerson
Rocha Vital, Benedito
Oliveira Carneiro, Angélica de Cássia
Breda Binoti, Daniel Henrique
Lopes, Pablo Falco
Garcia Leite, Helio
description The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.
doi_str_mv 10.4067/S0718-221X2021000100465
format article
fullrecord <record><control><sourceid>scielo_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8558bc048bcb49c5a785b81b1dca09a6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0718_221X2021000100465</scielo_id><doaj_id>oai_doaj_org_article_8558bc048bcb49c5a785b81b1dca09a6</doaj_id><sourcerecordid>S0718_221X2021000100465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63</originalsourceid><addsrcrecordid>eNp1UdtKAzEQDaJgrX6D-wOtk2yyyT7W4qVQ8EEF38JsLjVluynZ7YN_b9pKEcSHuXMOZ2YIuaUw5VDJu1eQVE0Yox8MGAWAbLwSZ2R0Gpz_yi_JVd-vAURdCTEi97PdEDc4BFME67oh-GByFbsi-sJ8YjIR2yKmsApd0WDvbJFn1rlt0TpMXehW1-TCY9u7m584Ju-PD2_z58ny5Wkxny0nhld8mJS2FrY0dfaeKaUMKmEApRSMsVph7VwDlKuyVtYacFKC9yBLBPCcNlU5Josjr4241tsUNpi-dMSgD42YVhpTXqR1WgmhGgM8u4bXRqBUolG0odYg1Ljnmh65ehNcG_U67lKXxevDNfWfa2aAPAJMin2fnD8JoKD3f_gX-Q2Yp3hc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic identification of charcoal origin based on deep learning</title><source>SciELO</source><creator>Rodrigues de Oliveira, Ricardo ; Ferreira Rodrigues, Larissa ; Mari, João Fernando ; Coelho Naldi, Murilo ; Gomes Milagres, Emerson ; Rocha Vital, Benedito ; Oliveira Carneiro, Angélica de Cássia ; Breda Binoti, Daniel Henrique ; Lopes, Pablo Falco ; Garcia Leite, Helio</creator><creatorcontrib>Rodrigues de Oliveira, Ricardo ; Ferreira Rodrigues, Larissa ; Mari, João Fernando ; Coelho Naldi, Murilo ; Gomes Milagres, Emerson ; Rocha Vital, Benedito ; Oliveira Carneiro, Angélica de Cássia ; Breda Binoti, Daniel Henrique ; Lopes, Pablo Falco ; Garcia Leite, Helio</creatorcontrib><description>The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.</description><identifier>ISSN: 0718-221X</identifier><identifier>ISSN: 0717-3644</identifier><identifier>EISSN: 0718-221X</identifier><identifier>DOI: 10.4067/S0718-221X2021000100465</identifier><language>eng</language><publisher>Universidad del Bío-Bío</publisher><subject>Charcoal ; classification ; deep learning ; MATERIALS SCIENCE, PAPER &amp; WOOD ; native wood ; preprocessing</subject><ispartof>Maderas, 2021-01, Vol.23</ispartof><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,24131,27903,27904</link.rule.ids></links><search><creatorcontrib>Rodrigues de Oliveira, Ricardo</creatorcontrib><creatorcontrib>Ferreira Rodrigues, Larissa</creatorcontrib><creatorcontrib>Mari, João Fernando</creatorcontrib><creatorcontrib>Coelho Naldi, Murilo</creatorcontrib><creatorcontrib>Gomes Milagres, Emerson</creatorcontrib><creatorcontrib>Rocha Vital, Benedito</creatorcontrib><creatorcontrib>Oliveira Carneiro, Angélica de Cássia</creatorcontrib><creatorcontrib>Breda Binoti, Daniel Henrique</creatorcontrib><creatorcontrib>Lopes, Pablo Falco</creatorcontrib><creatorcontrib>Garcia Leite, Helio</creatorcontrib><title>Automatic identification of charcoal origin based on deep learning</title><title>Maderas</title><addtitle>Maderas, Cienc. tecnol</addtitle><description>The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.</description><subject>Charcoal</subject><subject>classification</subject><subject>deep learning</subject><subject>MATERIALS SCIENCE, PAPER &amp; WOOD</subject><subject>native wood</subject><subject>preprocessing</subject><issn>0718-221X</issn><issn>0717-3644</issn><issn>0718-221X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UdtKAzEQDaJgrX6D-wOtk2yyyT7W4qVQ8EEF38JsLjVluynZ7YN_b9pKEcSHuXMOZ2YIuaUw5VDJu1eQVE0Yox8MGAWAbLwSZ2R0Gpz_yi_JVd-vAURdCTEi97PdEDc4BFME67oh-GByFbsi-sJ8YjIR2yKmsApd0WDvbJFn1rlt0TpMXehW1-TCY9u7m584Ju-PD2_z58ny5Wkxny0nhld8mJS2FrY0dfaeKaUMKmEApRSMsVph7VwDlKuyVtYacFKC9yBLBPCcNlU5Josjr4241tsUNpi-dMSgD42YVhpTXqR1WgmhGgM8u4bXRqBUolG0odYg1Ljnmh65ehNcG_U67lKXxevDNfWfa2aAPAJMin2fnD8JoKD3f_gX-Q2Yp3hc</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Rodrigues de Oliveira, Ricardo</creator><creator>Ferreira Rodrigues, Larissa</creator><creator>Mari, João Fernando</creator><creator>Coelho Naldi, Murilo</creator><creator>Gomes Milagres, Emerson</creator><creator>Rocha Vital, Benedito</creator><creator>Oliveira Carneiro, Angélica de Cássia</creator><creator>Breda Binoti, Daniel Henrique</creator><creator>Lopes, Pablo Falco</creator><creator>Garcia Leite, Helio</creator><general>Universidad del Bío-Bío</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>Automatic identification of charcoal origin based on deep learning</title><author>Rodrigues de Oliveira, Ricardo ; Ferreira Rodrigues, Larissa ; Mari, João Fernando ; Coelho Naldi, Murilo ; Gomes Milagres, Emerson ; Rocha Vital, Benedito ; Oliveira Carneiro, Angélica de Cássia ; Breda Binoti, Daniel Henrique ; Lopes, Pablo Falco ; Garcia Leite, Helio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charcoal</topic><topic>classification</topic><topic>deep learning</topic><topic>MATERIALS SCIENCE, PAPER &amp; WOOD</topic><topic>native wood</topic><topic>preprocessing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues de Oliveira, Ricardo</creatorcontrib><creatorcontrib>Ferreira Rodrigues, Larissa</creatorcontrib><creatorcontrib>Mari, João Fernando</creatorcontrib><creatorcontrib>Coelho Naldi, Murilo</creatorcontrib><creatorcontrib>Gomes Milagres, Emerson</creatorcontrib><creatorcontrib>Rocha Vital, Benedito</creatorcontrib><creatorcontrib>Oliveira Carneiro, Angélica de Cássia</creatorcontrib><creatorcontrib>Breda Binoti, Daniel Henrique</creatorcontrib><creatorcontrib>Lopes, Pablo Falco</creatorcontrib><creatorcontrib>Garcia Leite, Helio</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Maderas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues de Oliveira, Ricardo</au><au>Ferreira Rodrigues, Larissa</au><au>Mari, João Fernando</au><au>Coelho Naldi, Murilo</au><au>Gomes Milagres, Emerson</au><au>Rocha Vital, Benedito</au><au>Oliveira Carneiro, Angélica de Cássia</au><au>Breda Binoti, Daniel Henrique</au><au>Lopes, Pablo Falco</au><au>Garcia Leite, Helio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic identification of charcoal origin based on deep learning</atitle><jtitle>Maderas</jtitle><addtitle>Maderas, Cienc. tecnol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issn>0718-221X</issn><issn>0717-3644</issn><eissn>0718-221X</eissn><abstract>The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.</abstract><pub>Universidad del Bío-Bío</pub><doi>10.4067/S0718-221X2021000100465</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0718-221X
ispartof Maderas, 2021-01, Vol.23
issn 0718-221X
0717-3644
0718-221X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8558bc048bcb49c5a785b81b1dca09a6
source SciELO
subjects Charcoal
classification
deep learning
MATERIALS SCIENCE, PAPER & WOOD
native wood
preprocessing
title Automatic identification of charcoal origin based on deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20identification%20of%20charcoal%20origin%20based%20on%20deep%20learning&rft.jtitle=Maderas&rft.au=Rodrigues%20de%20Oliveira,%20Ricardo&rft.date=2021-01-01&rft.volume=23&rft.issn=0718-221X&rft.eissn=0718-221X&rft_id=info:doi/10.4067/S0718-221X2021000100465&rft_dat=%3Cscielo_doaj_%3ES0718_221X2021000100465%3C/scielo_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0718_221X2021000100465&rfr_iscdi=true