Loading…
Automatic identification of charcoal origin based on deep learning
The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learnin...
Saved in:
Published in: | Maderas 2021-01, Vol.23 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63 |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Maderas |
container_volume | 23 |
creator | Rodrigues de Oliveira, Ricardo Ferreira Rodrigues, Larissa Mari, João Fernando Coelho Naldi, Murilo Gomes Milagres, Emerson Rocha Vital, Benedito Oliveira Carneiro, Angélica de Cássia Breda Binoti, Daniel Henrique Lopes, Pablo Falco Garcia Leite, Helio |
description | The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies. |
doi_str_mv | 10.4067/S0718-221X2021000100465 |
format | article |
fullrecord | <record><control><sourceid>scielo_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8558bc048bcb49c5a785b81b1dca09a6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0718_221X2021000100465</scielo_id><doaj_id>oai_doaj_org_article_8558bc048bcb49c5a785b81b1dca09a6</doaj_id><sourcerecordid>S0718_221X2021000100465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63</originalsourceid><addsrcrecordid>eNp1UdtKAzEQDaJgrX6D-wOtk2yyyT7W4qVQ8EEF38JsLjVluynZ7YN_b9pKEcSHuXMOZ2YIuaUw5VDJu1eQVE0Yox8MGAWAbLwSZ2R0Gpz_yi_JVd-vAURdCTEi97PdEDc4BFME67oh-GByFbsi-sJ8YjIR2yKmsApd0WDvbJFn1rlt0TpMXehW1-TCY9u7m584Ju-PD2_z58ny5Wkxny0nhld8mJS2FrY0dfaeKaUMKmEApRSMsVph7VwDlKuyVtYacFKC9yBLBPCcNlU5Josjr4241tsUNpi-dMSgD42YVhpTXqR1WgmhGgM8u4bXRqBUolG0odYg1Ljnmh65ehNcG_U67lKXxevDNfWfa2aAPAJMin2fnD8JoKD3f_gX-Q2Yp3hc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic identification of charcoal origin based on deep learning</title><source>SciELO</source><creator>Rodrigues de Oliveira, Ricardo ; Ferreira Rodrigues, Larissa ; Mari, João Fernando ; Coelho Naldi, Murilo ; Gomes Milagres, Emerson ; Rocha Vital, Benedito ; Oliveira Carneiro, Angélica de Cássia ; Breda Binoti, Daniel Henrique ; Lopes, Pablo Falco ; Garcia Leite, Helio</creator><creatorcontrib>Rodrigues de Oliveira, Ricardo ; Ferreira Rodrigues, Larissa ; Mari, João Fernando ; Coelho Naldi, Murilo ; Gomes Milagres, Emerson ; Rocha Vital, Benedito ; Oliveira Carneiro, Angélica de Cássia ; Breda Binoti, Daniel Henrique ; Lopes, Pablo Falco ; Garcia Leite, Helio</creatorcontrib><description>The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.</description><identifier>ISSN: 0718-221X</identifier><identifier>ISSN: 0717-3644</identifier><identifier>EISSN: 0718-221X</identifier><identifier>DOI: 10.4067/S0718-221X2021000100465</identifier><language>eng</language><publisher>Universidad del Bío-Bío</publisher><subject>Charcoal ; classification ; deep learning ; MATERIALS SCIENCE, PAPER & WOOD ; native wood ; preprocessing</subject><ispartof>Maderas, 2021-01, Vol.23</ispartof><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,24131,27903,27904</link.rule.ids></links><search><creatorcontrib>Rodrigues de Oliveira, Ricardo</creatorcontrib><creatorcontrib>Ferreira Rodrigues, Larissa</creatorcontrib><creatorcontrib>Mari, João Fernando</creatorcontrib><creatorcontrib>Coelho Naldi, Murilo</creatorcontrib><creatorcontrib>Gomes Milagres, Emerson</creatorcontrib><creatorcontrib>Rocha Vital, Benedito</creatorcontrib><creatorcontrib>Oliveira Carneiro, Angélica de Cássia</creatorcontrib><creatorcontrib>Breda Binoti, Daniel Henrique</creatorcontrib><creatorcontrib>Lopes, Pablo Falco</creatorcontrib><creatorcontrib>Garcia Leite, Helio</creatorcontrib><title>Automatic identification of charcoal origin based on deep learning</title><title>Maderas</title><addtitle>Maderas, Cienc. tecnol</addtitle><description>The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.</description><subject>Charcoal</subject><subject>classification</subject><subject>deep learning</subject><subject>MATERIALS SCIENCE, PAPER & WOOD</subject><subject>native wood</subject><subject>preprocessing</subject><issn>0718-221X</issn><issn>0717-3644</issn><issn>0718-221X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UdtKAzEQDaJgrX6D-wOtk2yyyT7W4qVQ8EEF38JsLjVluynZ7YN_b9pKEcSHuXMOZ2YIuaUw5VDJu1eQVE0Yox8MGAWAbLwSZ2R0Gpz_yi_JVd-vAURdCTEi97PdEDc4BFME67oh-GByFbsi-sJ8YjIR2yKmsApd0WDvbJFn1rlt0TpMXehW1-TCY9u7m584Ju-PD2_z58ny5Wkxny0nhld8mJS2FrY0dfaeKaUMKmEApRSMsVph7VwDlKuyVtYacFKC9yBLBPCcNlU5Josjr4241tsUNpi-dMSgD42YVhpTXqR1WgmhGgM8u4bXRqBUolG0odYg1Ljnmh65ehNcG_U67lKXxevDNfWfa2aAPAJMin2fnD8JoKD3f_gX-Q2Yp3hc</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Rodrigues de Oliveira, Ricardo</creator><creator>Ferreira Rodrigues, Larissa</creator><creator>Mari, João Fernando</creator><creator>Coelho Naldi, Murilo</creator><creator>Gomes Milagres, Emerson</creator><creator>Rocha Vital, Benedito</creator><creator>Oliveira Carneiro, Angélica de Cássia</creator><creator>Breda Binoti, Daniel Henrique</creator><creator>Lopes, Pablo Falco</creator><creator>Garcia Leite, Helio</creator><general>Universidad del Bío-Bío</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>Automatic identification of charcoal origin based on deep learning</title><author>Rodrigues de Oliveira, Ricardo ; Ferreira Rodrigues, Larissa ; Mari, João Fernando ; Coelho Naldi, Murilo ; Gomes Milagres, Emerson ; Rocha Vital, Benedito ; Oliveira Carneiro, Angélica de Cássia ; Breda Binoti, Daniel Henrique ; Lopes, Pablo Falco ; Garcia Leite, Helio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charcoal</topic><topic>classification</topic><topic>deep learning</topic><topic>MATERIALS SCIENCE, PAPER & WOOD</topic><topic>native wood</topic><topic>preprocessing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues de Oliveira, Ricardo</creatorcontrib><creatorcontrib>Ferreira Rodrigues, Larissa</creatorcontrib><creatorcontrib>Mari, João Fernando</creatorcontrib><creatorcontrib>Coelho Naldi, Murilo</creatorcontrib><creatorcontrib>Gomes Milagres, Emerson</creatorcontrib><creatorcontrib>Rocha Vital, Benedito</creatorcontrib><creatorcontrib>Oliveira Carneiro, Angélica de Cássia</creatorcontrib><creatorcontrib>Breda Binoti, Daniel Henrique</creatorcontrib><creatorcontrib>Lopes, Pablo Falco</creatorcontrib><creatorcontrib>Garcia Leite, Helio</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Maderas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues de Oliveira, Ricardo</au><au>Ferreira Rodrigues, Larissa</au><au>Mari, João Fernando</au><au>Coelho Naldi, Murilo</au><au>Gomes Milagres, Emerson</au><au>Rocha Vital, Benedito</au><au>Oliveira Carneiro, Angélica de Cássia</au><au>Breda Binoti, Daniel Henrique</au><au>Lopes, Pablo Falco</au><au>Garcia Leite, Helio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic identification of charcoal origin based on deep learning</atitle><jtitle>Maderas</jtitle><addtitle>Maderas, Cienc. tecnol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issn>0718-221X</issn><issn>0717-3644</issn><eissn>0718-221X</eissn><abstract>The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.</abstract><pub>Universidad del Bío-Bío</pub><doi>10.4067/S0718-221X2021000100465</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0718-221X |
ispartof | Maderas, 2021-01, Vol.23 |
issn | 0718-221X 0717-3644 0718-221X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8558bc048bcb49c5a785b81b1dca09a6 |
source | SciELO |
subjects | Charcoal classification deep learning MATERIALS SCIENCE, PAPER & WOOD native wood preprocessing |
title | Automatic identification of charcoal origin based on deep learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20identification%20of%20charcoal%20origin%20based%20on%20deep%20learning&rft.jtitle=Maderas&rft.au=Rodrigues%20de%20Oliveira,%20Ricardo&rft.date=2021-01-01&rft.volume=23&rft.issn=0718-221X&rft.eissn=0718-221X&rft_id=info:doi/10.4067/S0718-221X2021000100465&rft_dat=%3Cscielo_doaj_%3ES0718_221X2021000100465%3C/scielo_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-3d95d3c995df2888ca85c0a77522298a9eeb0148398ddc0e770ff073a00f41b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0718_221X2021000100465&rfr_iscdi=true |