Loading…

Solving Permutation Flow Shop Scheduling Problem with Sequence-Independent Setup Time

In this paper, we study the resolution of a permutation flow shop problem with sequence-independent setup time. The objective is to minimize the maximum of job completion time, also called the makespan. In this contribution, we propose three methods of resolution, a mixed-integer linear programming...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mathematics 2020, Vol.2020 (2020), p.1-11
Main Authors: Belabid, Jabrane, Allali, Karam, Aqil, Said
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-f9e20b2a76135b4e74f6ff13e195bdfe87964f116a43422ec55da34fc6c1e2f63
cites cdi_FETCH-LOGICAL-c465t-f9e20b2a76135b4e74f6ff13e195bdfe87964f116a43422ec55da34fc6c1e2f63
container_end_page 11
container_issue 2020
container_start_page 1
container_title Journal of applied mathematics
container_volume 2020
creator Belabid, Jabrane
Allali, Karam
Aqil, Said
description In this paper, we study the resolution of a permutation flow shop problem with sequence-independent setup time. The objective is to minimize the maximum of job completion time, also called the makespan. In this contribution, we propose three methods of resolution, a mixed-integer linear programming (MILP) model; two heuristics, the first based on Johnson’s rule and the second based on the NEH algorithm; and finally two metaheuristics, the iterative local search algorithm and the iterated greedy algorithm. A set of test problems is simulated numerically to validate the effectiveness of our resolution approaches. For relatively small-size problems, it has been revealed that the adapted NEH heuristic has the best performance than that of the Johnson-based heuristic. For the relatively medium and large problems, the comparative study between the two metaheuristics based on the exploration of the neighborhood shows that the iterated greedy algorithm records the best performances.
doi_str_mv 10.1155/2020/7132469
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_856931718fd8408d8cd5d374c36f403e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622150061</galeid><doaj_id>oai_doaj_org_article_856931718fd8408d8cd5d374c36f403e</doaj_id><sourcerecordid>A622150061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-f9e20b2a76135b4e74f6ff13e195bdfe87964f116a43422ec55da34fc6c1e2f63</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYMoWFfffJYBH3Xa3HzOPJZidaGgsC34FrLJzW6WmcmYme3if2-2U_TRBJJw-N3DvTmEvAd6CSDlFaOMXmngTKj2BbkA1eiaUsFeljcArbXUP1-TN9N0oIWULVyQh03qHuOwq35g7o-znWMaqtsunarNPo3Vxu3RH7snIKdth311ivO-2uCvIw4O6_XgccRyDHMR5-NY3cce35JXwXYTvnu-V-Th9sv9zbf67vvX9c31Xe2EknMdWmR0y6xWwOVWoBZBhQAcoZVbH7DRrRIBQFnBBWPopPSWi-CUA2RB8RVZL74-2YMZc-xt_m2SjeZJSHlnbJ6j69A0UrUcNDTBN4I2vnFeeq6F4yoIyrF4fVy8xpzKcNNsDumYh9K-YVyeP4yXtSKXC7WzxTQOIc3ZurI99tGlAUMs-rViDEpNmWtFPi8FLqdpyhj-tgnUnFMz59TMc2oF_7Tg-zh4e4r_oz8sNBYGg_1HgxZSKf4HYBSfDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350020333</pqid></control><display><type>article</type><title>Solving Permutation Flow Shop Scheduling Problem with Sequence-Independent Setup Time</title><source>Publicly Available Content Database</source><source>Wiley Open Access Journals</source><creator>Belabid, Jabrane ; Allali, Karam ; Aqil, Said</creator><contributor>Krithivasan, Kannan ; Kannan Krithivasan</contributor><creatorcontrib>Belabid, Jabrane ; Allali, Karam ; Aqil, Said ; Krithivasan, Kannan ; Kannan Krithivasan</creatorcontrib><description>In this paper, we study the resolution of a permutation flow shop problem with sequence-independent setup time. The objective is to minimize the maximum of job completion time, also called the makespan. In this contribution, we propose three methods of resolution, a mixed-integer linear programming (MILP) model; two heuristics, the first based on Johnson’s rule and the second based on the NEH algorithm; and finally two metaheuristics, the iterative local search algorithm and the iterated greedy algorithm. A set of test problems is simulated numerically to validate the effectiveness of our resolution approaches. For relatively small-size problems, it has been revealed that the adapted NEH heuristic has the best performance than that of the Johnson-based heuristic. For the relatively medium and large problems, the comparative study between the two metaheuristics based on the exploration of the neighborhood shows that the iterated greedy algorithm records the best performances.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2020/7132469</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Analysis ; Comparative studies ; Completion time ; Computer simulation ; Greedy algorithms ; Heuristic ; Heuristic methods ; Integer programming ; Iterative methods ; Job shop scheduling ; Job shops ; Linear programming ; Neighborhoods ; Optimization algorithms ; Permutations ; Production scheduling ; Researchers ; Search algorithms ; Sequential scheduling ; Setup times ; Water waves</subject><ispartof>Journal of applied mathematics, 2020, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Jabrane Belabid et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Jabrane Belabid et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-f9e20b2a76135b4e74f6ff13e195bdfe87964f116a43422ec55da34fc6c1e2f63</citedby><cites>FETCH-LOGICAL-c465t-f9e20b2a76135b4e74f6ff13e195bdfe87964f116a43422ec55da34fc6c1e2f63</cites><orcidid>0000-0002-9463-4295 ; 0000-0002-7337-2927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2350020333/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2350020333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Krithivasan, Kannan</contributor><contributor>Kannan Krithivasan</contributor><creatorcontrib>Belabid, Jabrane</creatorcontrib><creatorcontrib>Allali, Karam</creatorcontrib><creatorcontrib>Aqil, Said</creatorcontrib><title>Solving Permutation Flow Shop Scheduling Problem with Sequence-Independent Setup Time</title><title>Journal of applied mathematics</title><description>In this paper, we study the resolution of a permutation flow shop problem with sequence-independent setup time. The objective is to minimize the maximum of job completion time, also called the makespan. In this contribution, we propose three methods of resolution, a mixed-integer linear programming (MILP) model; two heuristics, the first based on Johnson’s rule and the second based on the NEH algorithm; and finally two metaheuristics, the iterative local search algorithm and the iterated greedy algorithm. A set of test problems is simulated numerically to validate the effectiveness of our resolution approaches. For relatively small-size problems, it has been revealed that the adapted NEH heuristic has the best performance than that of the Johnson-based heuristic. For the relatively medium and large problems, the comparative study between the two metaheuristics based on the exploration of the neighborhood shows that the iterated greedy algorithm records the best performances.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Comparative studies</subject><subject>Completion time</subject><subject>Computer simulation</subject><subject>Greedy algorithms</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Iterative methods</subject><subject>Job shop scheduling</subject><subject>Job shops</subject><subject>Linear programming</subject><subject>Neighborhoods</subject><subject>Optimization algorithms</subject><subject>Permutations</subject><subject>Production scheduling</subject><subject>Researchers</subject><subject>Search algorithms</subject><subject>Sequential scheduling</subject><subject>Setup times</subject><subject>Water waves</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkd1rFDEUxYMoWFfffJYBH3Xa3HzOPJZidaGgsC34FrLJzW6WmcmYme3if2-2U_TRBJJw-N3DvTmEvAd6CSDlFaOMXmngTKj2BbkA1eiaUsFeljcArbXUP1-TN9N0oIWULVyQh03qHuOwq35g7o-znWMaqtsunarNPo3Vxu3RH7snIKdth311ivO-2uCvIw4O6_XgccRyDHMR5-NY3cce35JXwXYTvnu-V-Th9sv9zbf67vvX9c31Xe2EknMdWmR0y6xWwOVWoBZBhQAcoZVbH7DRrRIBQFnBBWPopPSWi-CUA2RB8RVZL74-2YMZc-xt_m2SjeZJSHlnbJ6j69A0UrUcNDTBN4I2vnFeeq6F4yoIyrF4fVy8xpzKcNNsDumYh9K-YVyeP4yXtSKXC7WzxTQOIc3ZurI99tGlAUMs-rViDEpNmWtFPi8FLqdpyhj-tgnUnFMz59TMc2oF_7Tg-zh4e4r_oz8sNBYGg_1HgxZSKf4HYBSfDA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Belabid, Jabrane</creator><creator>Allali, Karam</creator><creator>Aqil, Said</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9463-4295</orcidid><orcidid>https://orcid.org/0000-0002-7337-2927</orcidid></search><sort><creationdate>2020</creationdate><title>Solving Permutation Flow Shop Scheduling Problem with Sequence-Independent Setup Time</title><author>Belabid, Jabrane ; Allali, Karam ; Aqil, Said</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-f9e20b2a76135b4e74f6ff13e195bdfe87964f116a43422ec55da34fc6c1e2f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Comparative studies</topic><topic>Completion time</topic><topic>Computer simulation</topic><topic>Greedy algorithms</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Iterative methods</topic><topic>Job shop scheduling</topic><topic>Job shops</topic><topic>Linear programming</topic><topic>Neighborhoods</topic><topic>Optimization algorithms</topic><topic>Permutations</topic><topic>Production scheduling</topic><topic>Researchers</topic><topic>Search algorithms</topic><topic>Sequential scheduling</topic><topic>Setup times</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belabid, Jabrane</creatorcontrib><creatorcontrib>Allali, Karam</creatorcontrib><creatorcontrib>Aqil, Said</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belabid, Jabrane</au><au>Allali, Karam</au><au>Aqil, Said</au><au>Krithivasan, Kannan</au><au>Kannan Krithivasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Permutation Flow Shop Scheduling Problem with Sequence-Independent Setup Time</atitle><jtitle>Journal of applied mathematics</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>In this paper, we study the resolution of a permutation flow shop problem with sequence-independent setup time. The objective is to minimize the maximum of job completion time, also called the makespan. In this contribution, we propose three methods of resolution, a mixed-integer linear programming (MILP) model; two heuristics, the first based on Johnson’s rule and the second based on the NEH algorithm; and finally two metaheuristics, the iterative local search algorithm and the iterated greedy algorithm. A set of test problems is simulated numerically to validate the effectiveness of our resolution approaches. For relatively small-size problems, it has been revealed that the adapted NEH heuristic has the best performance than that of the Johnson-based heuristic. For the relatively medium and large problems, the comparative study between the two metaheuristics based on the exploration of the neighborhood shows that the iterated greedy algorithm records the best performances.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/7132469</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9463-4295</orcidid><orcidid>https://orcid.org/0000-0002-7337-2927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of applied mathematics, 2020, Vol.2020 (2020), p.1-11
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_856931718fd8408d8cd5d374c36f403e
source Publicly Available Content Database; Wiley Open Access Journals
subjects Algorithms
Analysis
Comparative studies
Completion time
Computer simulation
Greedy algorithms
Heuristic
Heuristic methods
Integer programming
Iterative methods
Job shop scheduling
Job shops
Linear programming
Neighborhoods
Optimization algorithms
Permutations
Production scheduling
Researchers
Search algorithms
Sequential scheduling
Setup times
Water waves
title Solving Permutation Flow Shop Scheduling Problem with Sequence-Independent Setup Time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Permutation%20Flow%20Shop%20Scheduling%20Problem%20with%20Sequence-Independent%20Setup%20Time&rft.jtitle=Journal%20of%20applied%20mathematics&rft.au=Belabid,%20Jabrane&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2020/7132469&rft_dat=%3Cgale_doaj_%3EA622150061%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-f9e20b2a76135b4e74f6ff13e195bdfe87964f116a43422ec55da34fc6c1e2f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350020333&rft_id=info:pmid/&rft_galeid=A622150061&rfr_iscdi=true