Loading…

Stationary and non-stationary solutions of the evolution equation for neutrino in matter

We study solutions of the equation which describes the evolution of a neutrino propagating in dense homogeneous medium in the framework of the quantum field theory. In the two-flavor model the explicit form of Green function is obtained, and as a consequence the dispersion law for a neutrino in matt...

Full description

Saved in:
Bibliographic Details
Main Authors: Chukhnova, A.V., Lobanov, A.E.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-cf3f5fa29d7057dab7590b20a324888598b46a4eeca56fde1640e87a239f20963
cites cdi_FETCH-LOGICAL-c391t-cf3f5fa29d7057dab7590b20a324888598b46a4eeca56fde1640e87a239f20963
container_end_page
container_issue
container_start_page 3002
container_title
container_volume 191
creator Chukhnova, A.V.
Lobanov, A.E.
description We study solutions of the equation which describes the evolution of a neutrino propagating in dense homogeneous medium in the framework of the quantum field theory. In the two-flavor model the explicit form of Green function is obtained, and as a consequence the dispersion law for a neutrino in matter is derived. Both the solutions describing the stationary states and the spin-flavor coherent states of the neutrino are found. It is shown that the stationary states of the neutrino are different from the mass states, and the wave function of a state with a definite flavor should be constructed as a linear combination of the wave functions of the stationary states with coefficients, which depend on the mixing angle in matter. In the ultra-relativistic limit the wave functions of the spin-flavor coherent states coincide with the solutions of the quasi-classical evolution equation. Quasi-classical approximation of the wave functions of spin-flavor coherent states is used to calculate the probabilities of transitions between neutrino states with definite flavor and helicity.
doi_str_mv 10.1051/epjconf/201819103002
format conference_proceeding
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_85869800f350486c99a6ea96b2858599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85869800f350486c99a6ea96b2858599</doaj_id><sourcerecordid>2127648005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-cf3f5fa29d7057dab7590b20a324888598b46a4eeca56fde1640e87a239f20963</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJgqf0HHgKe106STTY5SvGjUPCgQm8hu5voljZpk6zgv3f7gXYuM7x582aYh9AtgXsCnEztdtUE76YUiCSKAAOgF2hECUABpFxentXXaJLSCoZgSjEuRmj5lk3ugjfxBxvfYh98kf6hFNb9vk44OJy_LLbfJwTbXX-gYRci9rbPsfMBdx5vTM423qArZ9bJTk55jD6eHt9nL8Xi9Xk-e1gUDVMkF41jjjtDVVsBr1pTV1xBTcEwWkopuZJ1KUxpbWO4cK0logQrK0OZchSUYGM0P-q2waz0Nnab4W4dTKcPQIif2sTcNWurJZdCSQDHOJRSNEoZYY0SNR06fHjIGN0dtbYx7Hqbsl6FPvrhfE0JrUQ5DPOBVR5ZTQwpRev-thLQe0v0yRJ9bgn7BZ2zgGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2127648005</pqid></control><display><type>conference_proceeding</type><title>Stationary and non-stationary solutions of the evolution equation for neutrino in matter</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Chukhnova, A.V. ; Lobanov, A.E.</creator><contributor>Levkov, D.G. ; Volkova, V.E. ; Zhezher, Y.V. ; Matveev, V.A. ; Rubakov, V.A.</contributor><creatorcontrib>Chukhnova, A.V. ; Lobanov, A.E. ; Levkov, D.G. ; Volkova, V.E. ; Zhezher, Y.V. ; Matveev, V.A. ; Rubakov, V.A.</creatorcontrib><description>We study solutions of the equation which describes the evolution of a neutrino propagating in dense homogeneous medium in the framework of the quantum field theory. In the two-flavor model the explicit form of Green function is obtained, and as a consequence the dispersion law for a neutrino in matter is derived. Both the solutions describing the stationary states and the spin-flavor coherent states of the neutrino are found. It is shown that the stationary states of the neutrino are different from the mass states, and the wave function of a state with a definite flavor should be constructed as a linear combination of the wave functions of the stationary states with coefficients, which depend on the mixing angle in matter. In the ultra-relativistic limit the wave functions of the spin-flavor coherent states coincide with the solutions of the quasi-classical evolution equation. Quasi-classical approximation of the wave functions of spin-flavor coherent states is used to calculate the probabilities of transitions between neutrino states with definite flavor and helicity.</description><identifier>ISSN: 2100-014X</identifier><identifier>ISSN: 2101-6275</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/201819103002</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Coherence ; Economic models ; Evolution ; Field theory ; Flavor (particle physics) ; Green's functions ; Helicity ; Neutrinos ; Quantum field theory ; Quantum theory ; Wave functions</subject><ispartof>EPJ Web of conferences, 2018, Vol.191, p.3002</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-cf3f5fa29d7057dab7590b20a324888598b46a4eeca56fde1640e87a239f20963</citedby><cites>FETCH-LOGICAL-c391t-cf3f5fa29d7057dab7590b20a324888598b46a4eeca56fde1640e87a239f20963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2127648005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,778,782,787,788,23913,23914,25123,25736,27907,27908,36995,44573</link.rule.ids></links><search><contributor>Levkov, D.G.</contributor><contributor>Volkova, V.E.</contributor><contributor>Zhezher, Y.V.</contributor><contributor>Matveev, V.A.</contributor><contributor>Rubakov, V.A.</contributor><creatorcontrib>Chukhnova, A.V.</creatorcontrib><creatorcontrib>Lobanov, A.E.</creatorcontrib><title>Stationary and non-stationary solutions of the evolution equation for neutrino in matter</title><title>EPJ Web of conferences</title><description>We study solutions of the equation which describes the evolution of a neutrino propagating in dense homogeneous medium in the framework of the quantum field theory. In the two-flavor model the explicit form of Green function is obtained, and as a consequence the dispersion law for a neutrino in matter is derived. Both the solutions describing the stationary states and the spin-flavor coherent states of the neutrino are found. It is shown that the stationary states of the neutrino are different from the mass states, and the wave function of a state with a definite flavor should be constructed as a linear combination of the wave functions of the stationary states with coefficients, which depend on the mixing angle in matter. In the ultra-relativistic limit the wave functions of the spin-flavor coherent states coincide with the solutions of the quasi-classical evolution equation. Quasi-classical approximation of the wave functions of spin-flavor coherent states is used to calculate the probabilities of transitions between neutrino states with definite flavor and helicity.</description><subject>Coherence</subject><subject>Economic models</subject><subject>Evolution</subject><subject>Field theory</subject><subject>Flavor (particle physics)</subject><subject>Green's functions</subject><subject>Helicity</subject><subject>Neutrinos</subject><subject>Quantum field theory</subject><subject>Quantum theory</subject><subject>Wave functions</subject><issn>2100-014X</issn><issn>2101-6275</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaJgqf0HHgKe106STTY5SvGjUPCgQm8hu5voljZpk6zgv3f7gXYuM7x582aYh9AtgXsCnEztdtUE76YUiCSKAAOgF2hECUABpFxentXXaJLSCoZgSjEuRmj5lk3ugjfxBxvfYh98kf6hFNb9vk44OJy_LLbfJwTbXX-gYRci9rbPsfMBdx5vTM423qArZ9bJTk55jD6eHt9nL8Xi9Xk-e1gUDVMkF41jjjtDVVsBr1pTV1xBTcEwWkopuZJ1KUxpbWO4cK0logQrK0OZchSUYGM0P-q2waz0Nnab4W4dTKcPQIif2sTcNWurJZdCSQDHOJRSNEoZYY0SNR06fHjIGN0dtbYx7Hqbsl6FPvrhfE0JrUQ5DPOBVR5ZTQwpRev-thLQe0v0yRJ9bgn7BZ2zgGA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chukhnova, A.V.</creator><creator>Lobanov, A.E.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Stationary and non-stationary solutions of the evolution equation for neutrino in matter</title><author>Chukhnova, A.V. ; Lobanov, A.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-cf3f5fa29d7057dab7590b20a324888598b46a4eeca56fde1640e87a239f20963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coherence</topic><topic>Economic models</topic><topic>Evolution</topic><topic>Field theory</topic><topic>Flavor (particle physics)</topic><topic>Green's functions</topic><topic>Helicity</topic><topic>Neutrinos</topic><topic>Quantum field theory</topic><topic>Quantum theory</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chukhnova, A.V.</creatorcontrib><creatorcontrib>Lobanov, A.E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chukhnova, A.V.</au><au>Lobanov, A.E.</au><au>Levkov, D.G.</au><au>Volkova, V.E.</au><au>Zhezher, Y.V.</au><au>Matveev, V.A.</au><au>Rubakov, V.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stationary and non-stationary solutions of the evolution equation for neutrino in matter</atitle><btitle>EPJ Web of conferences</btitle><date>2018-01-01</date><risdate>2018</risdate><volume>191</volume><spage>3002</spage><pages>3002-</pages><issn>2100-014X</issn><issn>2101-6275</issn><eissn>2100-014X</eissn><abstract>We study solutions of the equation which describes the evolution of a neutrino propagating in dense homogeneous medium in the framework of the quantum field theory. In the two-flavor model the explicit form of Green function is obtained, and as a consequence the dispersion law for a neutrino in matter is derived. Both the solutions describing the stationary states and the spin-flavor coherent states of the neutrino are found. It is shown that the stationary states of the neutrino are different from the mass states, and the wave function of a state with a definite flavor should be constructed as a linear combination of the wave functions of the stationary states with coefficients, which depend on the mixing angle in matter. In the ultra-relativistic limit the wave functions of the spin-flavor coherent states coincide with the solutions of the quasi-classical evolution equation. Quasi-classical approximation of the wave functions of spin-flavor coherent states is used to calculate the probabilities of transitions between neutrino states with definite flavor and helicity.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjconf/201819103002</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2100-014X
ispartof EPJ Web of conferences, 2018, Vol.191, p.3002
issn 2100-014X
2101-6275
2100-014X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_85869800f350486c99a6ea96b2858599
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Coherence
Economic models
Evolution
Field theory
Flavor (particle physics)
Green's functions
Helicity
Neutrinos
Quantum field theory
Quantum theory
Wave functions
title Stationary and non-stationary solutions of the evolution equation for neutrino in matter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stationary%20and%20non-stationary%20solutions%20of%20the%20evolution%20equation%20for%20neutrino%20in%20matter&rft.btitle=EPJ%20Web%20of%20conferences&rft.au=Chukhnova,%20A.V.&rft.date=2018-01-01&rft.volume=191&rft.spage=3002&rft.pages=3002-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/201819103002&rft_dat=%3Cproquest_doaj_%3E2127648005%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-cf3f5fa29d7057dab7590b20a324888598b46a4eeca56fde1640e87a239f20963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127648005&rft_id=info:pmid/&rfr_iscdi=true