Loading…
Expansion of the Laser Beam Wavefront in Terms of Zernike Polynomials in the Problem of Turbulence Testing
The results of a study of the wavefront distortions of laser radiation caused by artificial turbulence obtained in laboratory conditions using a fan heater are presented. Decomposition of the wavefront in terms of Zernike polynomials is a standard procedure that traditionally is used to investigate...
Saved in:
Published in: | Applied sciences 2021-12, Vol.11 (24), p.12112 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The results of a study of the wavefront distortions of laser radiation caused by artificial turbulence obtained in laboratory conditions using a fan heater are presented. Decomposition of the wavefront in terms of Zernike polynomials is a standard procedure that traditionally is used to investigate the set of existing aberrations. In addition, the spectral analysis of the wavefront dynamics makes it possible to estimate the fraction of the energy distributed between different Zernike modes. It is shown that the fraction of energy related to the low-order polynomials is higher compared to the high-order polynomials. Also, one of the consequences of Taylor’s hypothesis is confirmed—low-order aberrations are slower compared to the higher-order ones. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app112412112 |