Loading…

SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification

Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not gene...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-07, Vol.13 (14), p.8551
Main Authors: Rafi, Taki Hasan, Ko, Young-Woong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3
cites cdi_FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3
container_end_page
container_issue 14
container_start_page 8551
container_title Applied sciences
container_volume 13
creator Rafi, Taki Hasan
Ko, Young-Woong
description Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not generalize on unseen cases and are also unable to preserve data privacy. Which incentivizes performance degradation in existing models with privacy limitations. To tackle generalization and privacy issues together, we introduce the framework SF-ECG, a source-free domain adaptation approach for patient-specific ECG classification. This framework does not require source data during adaptation, which solves the privacy issue during adaptation. We adopt a generative model (GAN) that learns to synthesize patient-specific ECG data in data-inefficient classes to make additional source data for imbalanced classes. Then, we use the local structure clustering method to strongly align target ECG features with similar neighbors. After seizing clustered target features, we use a classifier that is trained on source data with generated source samples, which makes the model generalizable in classifying unseen data. Empirical results under different experimental conditions in various interdomain datasets prove that the proposed framework achieves 0.8% improvements in UDA settings, along with preserving privacy and generalizability.
doi_str_mv 10.3390/app13148551
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_85a83d4f8ad64be3a05fda286ac5209e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758857235</galeid><doaj_id>oai_doaj_org_article_85a83d4f8ad64be3a05fda286ac5209e</doaj_id><sourcerecordid>A758857235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3</originalsourceid><addsrcrecordid>eNptUU1rGzEQXUIDDWlO_QMLOZZN9bnS9ua6dmoI9JD0LMazkq3Fu9pK8sH_Pkpc2hSqOWh4eu8xo1dVHym547wjn2GeKadCS0kvqitGVNtwQdW7N_376ialgZTTUa4puaqGx3WzWt5_qR_DMaJt1tHaejNlG9NxO1jM9bcwgp_qRQ9zhuzDVLsQ69WhvMWAEHsfdhHm_an5Csn29SLG_SnvRw_18gApeefxVfehunRwSPbm931d_Vyvnpbfm4cf95vl4qFBwWlutKTAgGAnmSJEKuy4si0VtmWKgqatYii03baoEbeaCdcxzZHRgmqNll9Xm7NvH2Awc_QjxJMJ4M0rEOLOQMweD9ZoCZr3wmnoW7G1HIh0PTDdAkpGuhev27PXHMOvo03ZDOWfpjK-YVqwTgku2r-sHRRTP7mQI-DoE5qFklpLxbgsrLv_sEr1dvQYJut8wf8RfDoLMIaUonV_lqHEvERu3kTOnwE1VZv_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842974346</pqid></control><display><type>article</type><title>SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification</title><source>Publicly Available Content Database</source><creator>Rafi, Taki Hasan ; Ko, Young-Woong</creator><creatorcontrib>Rafi, Taki Hasan ; Ko, Young-Woong</creatorcontrib><description>Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not generalize on unseen cases and are also unable to preserve data privacy. Which incentivizes performance degradation in existing models with privacy limitations. To tackle generalization and privacy issues together, we introduce the framework SF-ECG, a source-free domain adaptation approach for patient-specific ECG classification. This framework does not require source data during adaptation, which solves the privacy issue during adaptation. We adopt a generative model (GAN) that learns to synthesize patient-specific ECG data in data-inefficient classes to make additional source data for imbalanced classes. Then, we use the local structure clustering method to strongly align target ECG features with similar neighbors. After seizing clustered target features, we use a classifier that is trained on source data with generated source samples, which makes the model generalizable in classifying unseen data. Empirical results under different experimental conditions in various interdomain datasets prove that the proposed framework achieves 0.8% improvements in UDA settings, along with preserving privacy and generalizability.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13148551</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Arrhythmia ; Cardiac arrhythmia ; Classification ; Datasets ; Deep learning ; Disease ; Electrocardiogram ; Electrocardiography ; generative adversarial networks ; Medical research ; Methods ; Physiology ; Privacy ; Privacy, Right of ; source-free domain adaptation</subject><ispartof>Applied sciences, 2023-07, Vol.13 (14), p.8551</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3</citedby><cites>FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3</cites><orcidid>0000-0003-3920-9314 ; 0000-0002-6292-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2842974346/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2842974346?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Rafi, Taki Hasan</creatorcontrib><creatorcontrib>Ko, Young-Woong</creatorcontrib><title>SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification</title><title>Applied sciences</title><description>Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not generalize on unseen cases and are also unable to preserve data privacy. Which incentivizes performance degradation in existing models with privacy limitations. To tackle generalization and privacy issues together, we introduce the framework SF-ECG, a source-free domain adaptation approach for patient-specific ECG classification. This framework does not require source data during adaptation, which solves the privacy issue during adaptation. We adopt a generative model (GAN) that learns to synthesize patient-specific ECG data in data-inefficient classes to make additional source data for imbalanced classes. Then, we use the local structure clustering method to strongly align target ECG features with similar neighbors. After seizing clustered target features, we use a classifier that is trained on source data with generated source samples, which makes the model generalizable in classifying unseen data. Empirical results under different experimental conditions in various interdomain datasets prove that the proposed framework achieves 0.8% improvements in UDA settings, along with preserving privacy and generalizability.</description><subject>Arrhythmia</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>generative adversarial networks</subject><subject>Medical research</subject><subject>Methods</subject><subject>Physiology</subject><subject>Privacy</subject><subject>Privacy, Right of</subject><subject>source-free domain adaptation</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1rGzEQXUIDDWlO_QMLOZZN9bnS9ua6dmoI9JD0LMazkq3Fu9pK8sH_Pkpc2hSqOWh4eu8xo1dVHym547wjn2GeKadCS0kvqitGVNtwQdW7N_376ialgZTTUa4puaqGx3WzWt5_qR_DMaJt1tHaejNlG9NxO1jM9bcwgp_qRQ9zhuzDVLsQ69WhvMWAEHsfdhHm_an5Csn29SLG_SnvRw_18gApeefxVfehunRwSPbm931d_Vyvnpbfm4cf95vl4qFBwWlutKTAgGAnmSJEKuy4si0VtmWKgqatYii03baoEbeaCdcxzZHRgmqNll9Xm7NvH2Awc_QjxJMJ4M0rEOLOQMweD9ZoCZr3wmnoW7G1HIh0PTDdAkpGuhev27PXHMOvo03ZDOWfpjK-YVqwTgku2r-sHRRTP7mQI-DoE5qFklpLxbgsrLv_sEr1dvQYJut8wf8RfDoLMIaUonV_lqHEvERu3kTOnwE1VZv_</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Rafi, Taki Hasan</creator><creator>Ko, Young-Woong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3920-9314</orcidid><orcidid>https://orcid.org/0000-0002-6292-0799</orcidid></search><sort><creationdate>20230701</creationdate><title>SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification</title><author>Rafi, Taki Hasan ; Ko, Young-Woong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrhythmia</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>generative adversarial networks</topic><topic>Medical research</topic><topic>Methods</topic><topic>Physiology</topic><topic>Privacy</topic><topic>Privacy, Right of</topic><topic>source-free domain adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafi, Taki Hasan</creatorcontrib><creatorcontrib>Ko, Young-Woong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafi, Taki Hasan</au><au>Ko, Young-Woong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification</atitle><jtitle>Applied sciences</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>13</volume><issue>14</issue><spage>8551</spage><pages>8551-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not generalize on unseen cases and are also unable to preserve data privacy. Which incentivizes performance degradation in existing models with privacy limitations. To tackle generalization and privacy issues together, we introduce the framework SF-ECG, a source-free domain adaptation approach for patient-specific ECG classification. This framework does not require source data during adaptation, which solves the privacy issue during adaptation. We adopt a generative model (GAN) that learns to synthesize patient-specific ECG data in data-inefficient classes to make additional source data for imbalanced classes. Then, we use the local structure clustering method to strongly align target ECG features with similar neighbors. After seizing clustered target features, we use a classifier that is trained on source data with generated source samples, which makes the model generalizable in classifying unseen data. Empirical results under different experimental conditions in various interdomain datasets prove that the proposed framework achieves 0.8% improvements in UDA settings, along with preserving privacy and generalizability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13148551</doi><orcidid>https://orcid.org/0000-0003-3920-9314</orcidid><orcidid>https://orcid.org/0000-0002-6292-0799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-07, Vol.13 (14), p.8551
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_85a83d4f8ad64be3a05fda286ac5209e
source Publicly Available Content Database
subjects Arrhythmia
Cardiac arrhythmia
Classification
Datasets
Deep learning
Disease
Electrocardiogram
Electrocardiography
generative adversarial networks
Medical research
Methods
Physiology
Privacy
Privacy, Right of
source-free domain adaptation
title SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SF-ECG:%20Source-Free%20Intersubject%20Domain%20Adaptation%20for%20Electrocardiography-Based%20Arrhythmia%20Classification&rft.jtitle=Applied%20sciences&rft.au=Rafi,%20Taki%20Hasan&rft.date=2023-07-01&rft.volume=13&rft.issue=14&rft.spage=8551&rft.pages=8551-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13148551&rft_dat=%3Cgale_doaj_%3EA758857235%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842974346&rft_id=info:pmid/&rft_galeid=A758857235&rfr_iscdi=true