Loading…
SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification
Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not gene...
Saved in:
Published in: | Applied sciences 2023-07, Vol.13 (14), p.8551 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3 |
container_end_page | |
container_issue | 14 |
container_start_page | 8551 |
container_title | Applied sciences |
container_volume | 13 |
creator | Rafi, Taki Hasan Ko, Young-Woong |
description | Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not generalize on unseen cases and are also unable to preserve data privacy. Which incentivizes performance degradation in existing models with privacy limitations. To tackle generalization and privacy issues together, we introduce the framework SF-ECG, a source-free domain adaptation approach for patient-specific ECG classification. This framework does not require source data during adaptation, which solves the privacy issue during adaptation. We adopt a generative model (GAN) that learns to synthesize patient-specific ECG data in data-inefficient classes to make additional source data for imbalanced classes. Then, we use the local structure clustering method to strongly align target ECG features with similar neighbors. After seizing clustered target features, we use a classifier that is trained on source data with generated source samples, which makes the model generalizable in classifying unseen data. Empirical results under different experimental conditions in various interdomain datasets prove that the proposed framework achieves 0.8% improvements in UDA settings, along with preserving privacy and generalizability. |
doi_str_mv | 10.3390/app13148551 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_85a83d4f8ad64be3a05fda286ac5209e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758857235</galeid><doaj_id>oai_doaj_org_article_85a83d4f8ad64be3a05fda286ac5209e</doaj_id><sourcerecordid>A758857235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3</originalsourceid><addsrcrecordid>eNptUU1rGzEQXUIDDWlO_QMLOZZN9bnS9ua6dmoI9JD0LMazkq3Fu9pK8sH_Pkpc2hSqOWh4eu8xo1dVHym547wjn2GeKadCS0kvqitGVNtwQdW7N_376ialgZTTUa4puaqGx3WzWt5_qR_DMaJt1tHaejNlG9NxO1jM9bcwgp_qRQ9zhuzDVLsQ69WhvMWAEHsfdhHm_an5Csn29SLG_SnvRw_18gApeefxVfehunRwSPbm931d_Vyvnpbfm4cf95vl4qFBwWlutKTAgGAnmSJEKuy4si0VtmWKgqatYii03baoEbeaCdcxzZHRgmqNll9Xm7NvH2Awc_QjxJMJ4M0rEOLOQMweD9ZoCZr3wmnoW7G1HIh0PTDdAkpGuhev27PXHMOvo03ZDOWfpjK-YVqwTgku2r-sHRRTP7mQI-DoE5qFklpLxbgsrLv_sEr1dvQYJut8wf8RfDoLMIaUonV_lqHEvERu3kTOnwE1VZv_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842974346</pqid></control><display><type>article</type><title>SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification</title><source>Publicly Available Content Database</source><creator>Rafi, Taki Hasan ; Ko, Young-Woong</creator><creatorcontrib>Rafi, Taki Hasan ; Ko, Young-Woong</creatorcontrib><description>Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not generalize on unseen cases and are also unable to preserve data privacy. Which incentivizes performance degradation in existing models with privacy limitations. To tackle generalization and privacy issues together, we introduce the framework SF-ECG, a source-free domain adaptation approach for patient-specific ECG classification. This framework does not require source data during adaptation, which solves the privacy issue during adaptation. We adopt a generative model (GAN) that learns to synthesize patient-specific ECG data in data-inefficient classes to make additional source data for imbalanced classes. Then, we use the local structure clustering method to strongly align target ECG features with similar neighbors. After seizing clustered target features, we use a classifier that is trained on source data with generated source samples, which makes the model generalizable in classifying unseen data. Empirical results under different experimental conditions in various interdomain datasets prove that the proposed framework achieves 0.8% improvements in UDA settings, along with preserving privacy and generalizability.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13148551</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Arrhythmia ; Cardiac arrhythmia ; Classification ; Datasets ; Deep learning ; Disease ; Electrocardiogram ; Electrocardiography ; generative adversarial networks ; Medical research ; Methods ; Physiology ; Privacy ; Privacy, Right of ; source-free domain adaptation</subject><ispartof>Applied sciences, 2023-07, Vol.13 (14), p.8551</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3</citedby><cites>FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3</cites><orcidid>0000-0003-3920-9314 ; 0000-0002-6292-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2842974346/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2842974346?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Rafi, Taki Hasan</creatorcontrib><creatorcontrib>Ko, Young-Woong</creatorcontrib><title>SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification</title><title>Applied sciences</title><description>Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not generalize on unseen cases and are also unable to preserve data privacy. Which incentivizes performance degradation in existing models with privacy limitations. To tackle generalization and privacy issues together, we introduce the framework SF-ECG, a source-free domain adaptation approach for patient-specific ECG classification. This framework does not require source data during adaptation, which solves the privacy issue during adaptation. We adopt a generative model (GAN) that learns to synthesize patient-specific ECG data in data-inefficient classes to make additional source data for imbalanced classes. Then, we use the local structure clustering method to strongly align target ECG features with similar neighbors. After seizing clustered target features, we use a classifier that is trained on source data with generated source samples, which makes the model generalizable in classifying unseen data. Empirical results under different experimental conditions in various interdomain datasets prove that the proposed framework achieves 0.8% improvements in UDA settings, along with preserving privacy and generalizability.</description><subject>Arrhythmia</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>generative adversarial networks</subject><subject>Medical research</subject><subject>Methods</subject><subject>Physiology</subject><subject>Privacy</subject><subject>Privacy, Right of</subject><subject>source-free domain adaptation</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1rGzEQXUIDDWlO_QMLOZZN9bnS9ua6dmoI9JD0LMazkq3Fu9pK8sH_Pkpc2hSqOWh4eu8xo1dVHym547wjn2GeKadCS0kvqitGVNtwQdW7N_376ialgZTTUa4puaqGx3WzWt5_qR_DMaJt1tHaejNlG9NxO1jM9bcwgp_qRQ9zhuzDVLsQ69WhvMWAEHsfdhHm_an5Csn29SLG_SnvRw_18gApeefxVfehunRwSPbm931d_Vyvnpbfm4cf95vl4qFBwWlutKTAgGAnmSJEKuy4si0VtmWKgqatYii03baoEbeaCdcxzZHRgmqNll9Xm7NvH2Awc_QjxJMJ4M0rEOLOQMweD9ZoCZr3wmnoW7G1HIh0PTDdAkpGuhev27PXHMOvo03ZDOWfpjK-YVqwTgku2r-sHRRTP7mQI-DoE5qFklpLxbgsrLv_sEr1dvQYJut8wf8RfDoLMIaUonV_lqHEvERu3kTOnwE1VZv_</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Rafi, Taki Hasan</creator><creator>Ko, Young-Woong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3920-9314</orcidid><orcidid>https://orcid.org/0000-0002-6292-0799</orcidid></search><sort><creationdate>20230701</creationdate><title>SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification</title><author>Rafi, Taki Hasan ; Ko, Young-Woong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrhythmia</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>generative adversarial networks</topic><topic>Medical research</topic><topic>Methods</topic><topic>Physiology</topic><topic>Privacy</topic><topic>Privacy, Right of</topic><topic>source-free domain adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafi, Taki Hasan</creatorcontrib><creatorcontrib>Ko, Young-Woong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafi, Taki Hasan</au><au>Ko, Young-Woong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification</atitle><jtitle>Applied sciences</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>13</volume><issue>14</issue><spage>8551</spage><pages>8551-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Electrocardiography (ECG)-based arrhythmia classification intends to have a massive role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional models do not generalize on unseen cases and are also unable to preserve data privacy. Which incentivizes performance degradation in existing models with privacy limitations. To tackle generalization and privacy issues together, we introduce the framework SF-ECG, a source-free domain adaptation approach for patient-specific ECG classification. This framework does not require source data during adaptation, which solves the privacy issue during adaptation. We adopt a generative model (GAN) that learns to synthesize patient-specific ECG data in data-inefficient classes to make additional source data for imbalanced classes. Then, we use the local structure clustering method to strongly align target ECG features with similar neighbors. After seizing clustered target features, we use a classifier that is trained on source data with generated source samples, which makes the model generalizable in classifying unseen data. Empirical results under different experimental conditions in various interdomain datasets prove that the proposed framework achieves 0.8% improvements in UDA settings, along with preserving privacy and generalizability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13148551</doi><orcidid>https://orcid.org/0000-0003-3920-9314</orcidid><orcidid>https://orcid.org/0000-0002-6292-0799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-07, Vol.13 (14), p.8551 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_85a83d4f8ad64be3a05fda286ac5209e |
source | Publicly Available Content Database |
subjects | Arrhythmia Cardiac arrhythmia Classification Datasets Deep learning Disease Electrocardiogram Electrocardiography generative adversarial networks Medical research Methods Physiology Privacy Privacy, Right of source-free domain adaptation |
title | SF-ECG: Source-Free Intersubject Domain Adaptation for Electrocardiography-Based Arrhythmia Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SF-ECG:%20Source-Free%20Intersubject%20Domain%20Adaptation%20for%20Electrocardiography-Based%20Arrhythmia%20Classification&rft.jtitle=Applied%20sciences&rft.au=Rafi,%20Taki%20Hasan&rft.date=2023-07-01&rft.volume=13&rft.issue=14&rft.spage=8551&rft.pages=8551-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13148551&rft_dat=%3Cgale_doaj_%3EA758857235%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-851a2a0c95270057c937e614e6271a81672c48eb6c8ccb824f9283c21c4888ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842974346&rft_id=info:pmid/&rft_galeid=A758857235&rfr_iscdi=true |