Loading…

Batch and Column Adsorption of Phosphorus by Modified Montmorillonite

Phosphorus pollutants are a crucial component of water eutrophication. In this study, montmorillonite modified by Keggin Al13 and hexadecyltrimethyl ammonium (Al13-O-MMt) was used as an adsorbent to remove phosphorus from solutions and thus simulate the practice of a field trial, such as in wastewat...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-06, Vol.12 (11), p.5703
Main Authors: He, Zhonghao, Chen, Jiajun, Lu, Jianzun, Jiang, Sabrina Yanan, Su, Lingcheng, Lee, Chiu Hong, Ruan, Huada Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phosphorus pollutants are a crucial component of water eutrophication. In this study, montmorillonite modified by Keggin Al13 and hexadecyltrimethyl ammonium (Al13-O-MMt) was used as an adsorbent to remove phosphorus from solutions and thus simulate the practice of a field trial, such as in wastewater. The ammonium molybdate spectrophotometric method was used to determine the concentrations of phosphorus in samples. In the batch experiment, phosphorus was adsorbed by original montmorillonite (MMt) and Al13-O-MMt at various pH values (6–9) to identify the effect of pH during the adsorption process. The batch adsorption results demonstrate that Al13-O-MMt can adsorb up to 93% of phosphorus at pH = 8. Six graduated amounts (0.01–0.25 g) of montmorillonite were tested at three different temperatures to determine the most suitable temperature and the minimum dosage of Al13-O-MMt needed for the adsorption of 200 mg/L phosphorus in a 30 mL solution, which was 0.1 g at 25 °C. Therefore, the adsorption capacity of Al13-O-MMt was found to be 60 mg/g. Subsequently, a column experiment was conducted. The results showed that the optimized dosage of Al13-O-MMt was 6.667 g for phosphorus adsorption with a concentration of 200 mg/L in 2000 mL solution, and the breakthrough time was 4794.67 min.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12115703