Loading…
Federated Freeze BERT for text classification
Pre-trained BERT models have demonstrated exceptional performance in the context of text classification tasks. Certain problem domains necessitate data distribution without data sharing. Federated Learning (FL) allows multiple clients to collectively train a global model by sharing learned models ra...
Saved in:
Published in: | Journal of big data 2024-12, Vol.11 (1), p.28-16, Article 28 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-5d0cbe2be84566a6d1ccc045f2460ceaa8fe8eafc4ba9b66824198009339f1713 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 28 |
container_title | Journal of big data |
container_volume | 11 |
creator | Galal, Omar Abdel-Gawad, Ahmed H. Farouk, Mona |
description | Pre-trained BERT models have demonstrated exceptional performance in the context of text classification tasks. Certain problem domains necessitate data distribution without data sharing. Federated Learning (FL) allows multiple clients to collectively train a global model by sharing learned models rather than raw data. However, the adoption of BERT, a large model, within a Federated Learning framework incurs substantial communication costs. To address this challenge, we propose a novel framework, FedFreezeBERT, for BERT-based text classification. FedFreezeBERT works by adding an aggregation architecture on top of BERT to obtain better sentence embedding for classification while freezing BERT parameters. Keeping the model parameters frozen, FedFreezeBERT reduces the communication costs by a large factor compared to other state-of-the-art methods. FedFreezeBERT is implemented in a distributed version where the aggregation architecture only is being transferred and aggregated by FL algorithms such as FedAvg or FedProx. FedFreezeBERT is also implemented in a centralized version where the data embeddings extracted by BERT are sent to the central server to train the aggregation architecture. The experiments show that FedFreezeBERT achieves new state-of-the-art performance on Arabic sentiment analysis on the ArSarcasm-v2 dataset with a 12.9% and 1.2% improvement over FedAvg/FedProx and the previous SOTA respectively. FedFreezeBERT also reduces the communication cost by 5
×
compared to the previous SOTA. |
doi_str_mv | 10.1186/s40537-024-00885-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_85becda319d847ada25c0cdcd29693f0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85becda319d847ada25c0cdcd29693f0</doaj_id><sourcerecordid>2924079947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-5d0cbe2be84566a6d1ccc045f2460ceaa8fe8eafc4ba9b66824198009339f1713</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz6uTz02OWlotFASp55BNJmVL7dZkheqvd-2KevKUIbzPM8NLyCWFa0q1uskCJK9KYKIE0FqWhxMyYtSoklIqT__M52SS8wYAKO8ZJUaknGPA5DoMxTwhfmBxN3taFbFNRYeHrvBbl3MTG--6pt1dkLPothkn3--YPM9nq-lDuXy8X0xvl6UXknelDOBrZDVqIZVyKlDvPQgZmVDg0TkdUaOLXtTO1EppJqjRAIZzE2lF-ZgsBm9o3cbuU_Pi0rttXWOPH21aW5e6xm_RalmjD45TE7SoXHBMevDBB2aU4RF619Xg2qf29Q1zZzftW9r151tmmIDKGFH1KTakfGpzThh_tlKwXy3boWXbt2yPLdtDD_EByn14t8b0q_6H-gTXkH6K</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924079947</pqid></control><display><type>article</type><title>Federated Freeze BERT for text classification</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Galal, Omar ; Abdel-Gawad, Ahmed H. ; Farouk, Mona</creator><creatorcontrib>Galal, Omar ; Abdel-Gawad, Ahmed H. ; Farouk, Mona</creatorcontrib><description>Pre-trained BERT models have demonstrated exceptional performance in the context of text classification tasks. Certain problem domains necessitate data distribution without data sharing. Federated Learning (FL) allows multiple clients to collectively train a global model by sharing learned models rather than raw data. However, the adoption of BERT, a large model, within a Federated Learning framework incurs substantial communication costs. To address this challenge, we propose a novel framework, FedFreezeBERT, for BERT-based text classification. FedFreezeBERT works by adding an aggregation architecture on top of BERT to obtain better sentence embedding for classification while freezing BERT parameters. Keeping the model parameters frozen, FedFreezeBERT reduces the communication costs by a large factor compared to other state-of-the-art methods. FedFreezeBERT is implemented in a distributed version where the aggregation architecture only is being transferred and aggregated by FL algorithms such as FedAvg or FedProx. FedFreezeBERT is also implemented in a centralized version where the data embeddings extracted by BERT are sent to the central server to train the aggregation architecture. The experiments show that FedFreezeBERT achieves new state-of-the-art performance on Arabic sentiment analysis on the ArSarcasm-v2 dataset with a 12.9% and 1.2% improvement over FedAvg/FedProx and the previous SOTA respectively. FedFreezeBERT also reduces the communication cost by 5
×
compared to the previous SOTA.</description><identifier>ISSN: 2196-1115</identifier><identifier>EISSN: 2196-1115</identifier><identifier>DOI: 10.1186/s40537-024-00885-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; BERT ; Big Data ; Classification ; Communication ; Communications Engineering ; Computational Science and Engineering ; Computer Science ; Data mining ; Data Mining and Knowledge Discovery ; Database Management ; Federated Learning (FL) ; Freezing ; Information Storage and Retrieval ; Machine learning ; Mathematical Applications in Computer Science ; Mathematical models ; Natural Language Processing (NLP) ; Networks ; Parameters ; Pre-trained Language Models ; Sentiment analysis ; Text categorization ; Text classification</subject><ispartof>Journal of big data, 2024-12, Vol.11 (1), p.28-16, Article 28</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c453t-5d0cbe2be84566a6d1ccc045f2460ceaa8fe8eafc4ba9b66824198009339f1713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2924079947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11667,21373,25731,27901,27902,33588,36037,36989,43709,44339,44566</link.rule.ids></links><search><creatorcontrib>Galal, Omar</creatorcontrib><creatorcontrib>Abdel-Gawad, Ahmed H.</creatorcontrib><creatorcontrib>Farouk, Mona</creatorcontrib><title>Federated Freeze BERT for text classification</title><title>Journal of big data</title><addtitle>J Big Data</addtitle><description>Pre-trained BERT models have demonstrated exceptional performance in the context of text classification tasks. Certain problem domains necessitate data distribution without data sharing. Federated Learning (FL) allows multiple clients to collectively train a global model by sharing learned models rather than raw data. However, the adoption of BERT, a large model, within a Federated Learning framework incurs substantial communication costs. To address this challenge, we propose a novel framework, FedFreezeBERT, for BERT-based text classification. FedFreezeBERT works by adding an aggregation architecture on top of BERT to obtain better sentence embedding for classification while freezing BERT parameters. Keeping the model parameters frozen, FedFreezeBERT reduces the communication costs by a large factor compared to other state-of-the-art methods. FedFreezeBERT is implemented in a distributed version where the aggregation architecture only is being transferred and aggregated by FL algorithms such as FedAvg or FedProx. FedFreezeBERT is also implemented in a centralized version where the data embeddings extracted by BERT are sent to the central server to train the aggregation architecture. The experiments show that FedFreezeBERT achieves new state-of-the-art performance on Arabic sentiment analysis on the ArSarcasm-v2 dataset with a 12.9% and 1.2% improvement over FedAvg/FedProx and the previous SOTA respectively. FedFreezeBERT also reduces the communication cost by 5
×
compared to the previous SOTA.</description><subject>Algorithms</subject><subject>BERT</subject><subject>Big Data</subject><subject>Classification</subject><subject>Communication</subject><subject>Communications Engineering</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Federated Learning (FL)</subject><subject>Freezing</subject><subject>Information Storage and Retrieval</subject><subject>Machine learning</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical models</subject><subject>Natural Language Processing (NLP)</subject><subject>Networks</subject><subject>Parameters</subject><subject>Pre-trained Language Models</subject><subject>Sentiment analysis</subject><subject>Text categorization</subject><subject>Text classification</subject><issn>2196-1115</issn><issn>2196-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz6uTz02OWlotFASp55BNJmVL7dZkheqvd-2KevKUIbzPM8NLyCWFa0q1uskCJK9KYKIE0FqWhxMyYtSoklIqT__M52SS8wYAKO8ZJUaknGPA5DoMxTwhfmBxN3taFbFNRYeHrvBbl3MTG--6pt1dkLPothkn3--YPM9nq-lDuXy8X0xvl6UXknelDOBrZDVqIZVyKlDvPQgZmVDg0TkdUaOLXtTO1EppJqjRAIZzE2lF-ZgsBm9o3cbuU_Pi0rttXWOPH21aW5e6xm_RalmjD45TE7SoXHBMevDBB2aU4RF619Xg2qf29Q1zZzftW9r151tmmIDKGFH1KTakfGpzThh_tlKwXy3boWXbt2yPLdtDD_EByn14t8b0q_6H-gTXkH6K</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Galal, Omar</creator><creator>Abdel-Gawad, Ahmed H.</creator><creator>Farouk, Mona</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Federated Freeze BERT for text classification</title><author>Galal, Omar ; Abdel-Gawad, Ahmed H. ; Farouk, Mona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-5d0cbe2be84566a6d1ccc045f2460ceaa8fe8eafc4ba9b66824198009339f1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>BERT</topic><topic>Big Data</topic><topic>Classification</topic><topic>Communication</topic><topic>Communications Engineering</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Federated Learning (FL)</topic><topic>Freezing</topic><topic>Information Storage and Retrieval</topic><topic>Machine learning</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical models</topic><topic>Natural Language Processing (NLP)</topic><topic>Networks</topic><topic>Parameters</topic><topic>Pre-trained Language Models</topic><topic>Sentiment analysis</topic><topic>Text categorization</topic><topic>Text classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galal, Omar</creatorcontrib><creatorcontrib>Abdel-Gawad, Ahmed H.</creatorcontrib><creatorcontrib>Farouk, Mona</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Social Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ</collection><jtitle>Journal of big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galal, Omar</au><au>Abdel-Gawad, Ahmed H.</au><au>Farouk, Mona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Freeze BERT for text classification</atitle><jtitle>Journal of big data</jtitle><stitle>J Big Data</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><spage>28</spage><epage>16</epage><pages>28-16</pages><artnum>28</artnum><issn>2196-1115</issn><eissn>2196-1115</eissn><abstract>Pre-trained BERT models have demonstrated exceptional performance in the context of text classification tasks. Certain problem domains necessitate data distribution without data sharing. Federated Learning (FL) allows multiple clients to collectively train a global model by sharing learned models rather than raw data. However, the adoption of BERT, a large model, within a Federated Learning framework incurs substantial communication costs. To address this challenge, we propose a novel framework, FedFreezeBERT, for BERT-based text classification. FedFreezeBERT works by adding an aggregation architecture on top of BERT to obtain better sentence embedding for classification while freezing BERT parameters. Keeping the model parameters frozen, FedFreezeBERT reduces the communication costs by a large factor compared to other state-of-the-art methods. FedFreezeBERT is implemented in a distributed version where the aggregation architecture only is being transferred and aggregated by FL algorithms such as FedAvg or FedProx. FedFreezeBERT is also implemented in a centralized version where the data embeddings extracted by BERT are sent to the central server to train the aggregation architecture. The experiments show that FedFreezeBERT achieves new state-of-the-art performance on Arabic sentiment analysis on the ArSarcasm-v2 dataset with a 12.9% and 1.2% improvement over FedAvg/FedProx and the previous SOTA respectively. FedFreezeBERT also reduces the communication cost by 5
×
compared to the previous SOTA.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40537-024-00885-x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-1115 |
ispartof | Journal of big data, 2024-12, Vol.11 (1), p.28-16, Article 28 |
issn | 2196-1115 2196-1115 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_85becda319d847ada25c0cdcd29693f0 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Social Science Premium Collection; ABI/INFORM Global; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Algorithms BERT Big Data Classification Communication Communications Engineering Computational Science and Engineering Computer Science Data mining Data Mining and Knowledge Discovery Database Management Federated Learning (FL) Freezing Information Storage and Retrieval Machine learning Mathematical Applications in Computer Science Mathematical models Natural Language Processing (NLP) Networks Parameters Pre-trained Language Models Sentiment analysis Text categorization Text classification |
title | Federated Freeze BERT for text classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Freeze%20BERT%20for%20text%20classification&rft.jtitle=Journal%20of%20big%20data&rft.au=Galal,%20Omar&rft.date=2024-12-01&rft.volume=11&rft.issue=1&rft.spage=28&rft.epage=16&rft.pages=28-16&rft.artnum=28&rft.issn=2196-1115&rft.eissn=2196-1115&rft_id=info:doi/10.1186/s40537-024-00885-x&rft_dat=%3Cproquest_doaj_%3E2924079947%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-5d0cbe2be84566a6d1ccc045f2460ceaa8fe8eafc4ba9b66824198009339f1713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2924079947&rft_id=info:pmid/&rfr_iscdi=true |