Loading…
The Transcription Factor MafB Regulates the Susceptibility of Bactrocera dorsalis to Abamectin via GSTz2
Pesticide resistance is a serious problem that poses a major challenge to pest control. One of the most potent resistance mechanisms is the overexpression of genes coding for detoxification enzymes. The expression of detoxification genes is regulated by a series of transcription factors. Previous st...
Saved in:
Published in: | Frontiers in physiology 2019-08, Vol.10, p.1068-1068 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pesticide resistance is a serious problem that poses a major challenge to pest control. One of the most potent resistance mechanisms is the overexpression of genes coding for detoxification enzymes. The expression of detoxification genes is regulated by a series of transcription factors. Previous studies have revealed that the increased expression of detoxification genes contributes to the insecticide tolerance of
Our objective was thus to identify the transcription factors involved in this process. Temporal expression profiles showed that the transcription factor
and detoxification genes were expressed highly in the fat body. Further analysis showed that the expression of
,
, and
was induced by abamectin. Disruption of the
transcription factor through RNA interference decreased the transcript levels of
and
and increased the susceptibility to abamectin significantly. Direct silencing of the expression of
also increased susceptibility to abamectin, while
did not. In conclusion, these results suggest that the expression of
and
was regulated by the transcription factor
, and the up-regulation of
via
decreased the susceptibility of
to abamectin. |
---|---|
ISSN: | 1664-042X 1664-042X |
DOI: | 10.3389/fphys.2019.01068 |