Loading…
Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators
Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube re...
Saved in:
Published in: | Nature communications 2022-10, Vol.13 (1), p.5900-5900, Article 5900 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13 |
container_end_page | 5900 |
container_issue | 1 |
container_start_page | 5900 |
container_title | Nature communications |
container_volume | 13 |
creator | Rechnitz, Sharon Tabachnik, Tal Shlafman, Michael Shlafman, Shlomo Yaish, Yuval E. |
description | Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward. We show that a small upward buckling yields record electrical frequency tunability, whereas larger buckling can achieve Euler-Bernoulli bi-stability, the smallest mechanical resonator with two stable configurations to date. We believe that these recently-discovered carbon nanotube devices will open new avenues for realizing nano-sensors, mechanical memory elements and mechanical parametric amplifiers. Furthermore, we present a three-dimensional theoretical analysis revealing significant nonlinear coupling between the in-plane and out-of-plane static and dynamic modes of motion, and a unique three-dimensional Euler-Bernoulli snap-through transition. We utilize this coupling to provide a conclusive explanation for the low quality factor in carbon nanotube resonators at room temperature, key in understanding dissipation mechanisms at the nano scale.
Computing, memories, and digital electronics are based on the operation principle of bi-stable systems. Here, Yaish et al. report the unusual non-linear behaviour of buckled up carbon nanotubes mechanical resonators, which allows high electrical frequency tunability and snap-through bi-stability. |
doi_str_mv | 10.1038/s41467-022-33440-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_85d2a18c6b514aef904e8f5fc95fb57f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85d2a18c6b514aef904e8f5fc95fb57f</doaj_id><sourcerecordid>2722021583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhgdRbKn9A64CbtyMzedMshGkWC1U3Og65OPkNte5yTWZEfrvm-kUtS7MJuHkfR8O57xd95rgdwQzeVE54cPYY0p7xjjHPX_WnVLMSU9Gyp7_9T7pzmvd43aYIpLzl90JGyimErPTzn3JHpDLy3GKaYds7OtsbJzifIdM8qgewc3FTMiWbDykVRQTsov7MYFHzhSbE0om5XmxgA7gbk2KrhkK1JzMnEt91b0IZqpw_nifdd-vPn67_NzffP10ffnhpnecj3PPhRfKODxwrNQgRhADOMdHNRIvWTCG40GFwG2TC0ydk3LwlCkLhFgFhJ111xvXZ7PXxxIPptzpbKJ-KOSy06bM0U2gpfDUEOkGKwg3EBTmIIMITolgxRga6_3GOi72AN5BWqfwBPr0J8Vbvcu_tBJsFIo2wNtHQMk_F6izPsTqYJpMgrxUTdtmiBgwXft-8490n5eS2qhWVdsUEZI1Fd1UruRaC4TfzRCs10joLRK6RUI_RELzZmKbqTZx2kH5g_6P6x5uMLiy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722021583</pqid></control><display><type>article</type><title>Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators</title><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Rechnitz, Sharon ; Tabachnik, Tal ; Shlafman, Michael ; Shlafman, Shlomo ; Yaish, Yuval E.</creator><creatorcontrib>Rechnitz, Sharon ; Tabachnik, Tal ; Shlafman, Michael ; Shlafman, Shlomo ; Yaish, Yuval E.</creatorcontrib><description>Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward. We show that a small upward buckling yields record electrical frequency tunability, whereas larger buckling can achieve Euler-Bernoulli bi-stability, the smallest mechanical resonator with two stable configurations to date. We believe that these recently-discovered carbon nanotube devices will open new avenues for realizing nano-sensors, mechanical memory elements and mechanical parametric amplifiers. Furthermore, we present a three-dimensional theoretical analysis revealing significant nonlinear coupling between the in-plane and out-of-plane static and dynamic modes of motion, and a unique three-dimensional Euler-Bernoulli snap-through transition. We utilize this coupling to provide a conclusive explanation for the low quality factor in carbon nanotube resonators at room temperature, key in understanding dissipation mechanisms at the nano scale.
Computing, memories, and digital electronics are based on the operation principle of bi-stable systems. Here, Yaish et al. report the unusual non-linear behaviour of buckled up carbon nanotubes mechanical resonators, which allows high electrical frequency tunability and snap-through bi-stability.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-33440-4</identifier><identifier>PMID: 36202803</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 147/28 ; 147/3 ; 639/925/357/73 ; 639/925/927/359 ; Buckling ; Carbon ; Carbon nanotubes ; Coupled modes ; Coupling ; Digital electronics ; Dissipation factor ; Humanities and Social Sciences ; multidisciplinary ; Nanoelectromechanical systems ; Nanosensors ; Nanotechnology ; Nanotubes ; Parametric amplifiers ; Quantum computing ; Resonators ; Room temperature ; Science ; Science (multidisciplinary) ; Sensors ; Theoretical analysis ; Three dimensional analysis ; Three dimensional motion</subject><ispartof>Nature communications, 2022-10, Vol.13 (1), p.5900-5900, Article 5900</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13</citedby><cites>FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13</cites><orcidid>0000-0001-7997-5457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2722021583/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2722021583?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Rechnitz, Sharon</creatorcontrib><creatorcontrib>Tabachnik, Tal</creatorcontrib><creatorcontrib>Shlafman, Michael</creatorcontrib><creatorcontrib>Shlafman, Shlomo</creatorcontrib><creatorcontrib>Yaish, Yuval E.</creatorcontrib><title>Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward. We show that a small upward buckling yields record electrical frequency tunability, whereas larger buckling can achieve Euler-Bernoulli bi-stability, the smallest mechanical resonator with two stable configurations to date. We believe that these recently-discovered carbon nanotube devices will open new avenues for realizing nano-sensors, mechanical memory elements and mechanical parametric amplifiers. Furthermore, we present a three-dimensional theoretical analysis revealing significant nonlinear coupling between the in-plane and out-of-plane static and dynamic modes of motion, and a unique three-dimensional Euler-Bernoulli snap-through transition. We utilize this coupling to provide a conclusive explanation for the low quality factor in carbon nanotube resonators at room temperature, key in understanding dissipation mechanisms at the nano scale.
Computing, memories, and digital electronics are based on the operation principle of bi-stable systems. Here, Yaish et al. report the unusual non-linear behaviour of buckled up carbon nanotubes mechanical resonators, which allows high electrical frequency tunability and snap-through bi-stability.</description><subject>140/133</subject><subject>147/28</subject><subject>147/3</subject><subject>639/925/357/73</subject><subject>639/925/927/359</subject><subject>Buckling</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Coupled modes</subject><subject>Coupling</subject><subject>Digital electronics</subject><subject>Dissipation factor</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanoelectromechanical systems</subject><subject>Nanosensors</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Parametric amplifiers</subject><subject>Quantum computing</subject><subject>Resonators</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Theoretical analysis</subject><subject>Three dimensional analysis</subject><subject>Three dimensional motion</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1rFTEUhgdRbKn9A64CbtyMzedMshGkWC1U3Og65OPkNte5yTWZEfrvm-kUtS7MJuHkfR8O57xd95rgdwQzeVE54cPYY0p7xjjHPX_WnVLMSU9Gyp7_9T7pzmvd43aYIpLzl90JGyimErPTzn3JHpDLy3GKaYds7OtsbJzifIdM8qgewc3FTMiWbDykVRQTsov7MYFHzhSbE0om5XmxgA7gbk2KrhkK1JzMnEt91b0IZqpw_nifdd-vPn67_NzffP10ffnhpnecj3PPhRfKODxwrNQgRhADOMdHNRIvWTCG40GFwG2TC0ydk3LwlCkLhFgFhJ111xvXZ7PXxxIPptzpbKJ-KOSy06bM0U2gpfDUEOkGKwg3EBTmIIMITolgxRga6_3GOi72AN5BWqfwBPr0J8Vbvcu_tBJsFIo2wNtHQMk_F6izPsTqYJpMgrxUTdtmiBgwXft-8490n5eS2qhWVdsUEZI1Fd1UruRaC4TfzRCs10joLRK6RUI_RELzZmKbqTZx2kH5g_6P6x5uMLiy</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>Rechnitz, Sharon</creator><creator>Tabachnik, Tal</creator><creator>Shlafman, Michael</creator><creator>Shlafman, Shlomo</creator><creator>Yaish, Yuval E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7997-5457</orcidid></search><sort><creationdate>20221006</creationdate><title>Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators</title><author>Rechnitz, Sharon ; Tabachnik, Tal ; Shlafman, Michael ; Shlafman, Shlomo ; Yaish, Yuval E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/133</topic><topic>147/28</topic><topic>147/3</topic><topic>639/925/357/73</topic><topic>639/925/927/359</topic><topic>Buckling</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Coupled modes</topic><topic>Coupling</topic><topic>Digital electronics</topic><topic>Dissipation factor</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanoelectromechanical systems</topic><topic>Nanosensors</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Parametric amplifiers</topic><topic>Quantum computing</topic><topic>Resonators</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Theoretical analysis</topic><topic>Three dimensional analysis</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rechnitz, Sharon</creatorcontrib><creatorcontrib>Tabachnik, Tal</creatorcontrib><creatorcontrib>Shlafman, Michael</creatorcontrib><creatorcontrib>Shlafman, Shlomo</creatorcontrib><creatorcontrib>Yaish, Yuval E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rechnitz, Sharon</au><au>Tabachnik, Tal</au><au>Shlafman, Michael</au><au>Shlafman, Shlomo</au><au>Yaish, Yuval E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2022-10-06</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>5900</spage><epage>5900</epage><pages>5900-5900</pages><artnum>5900</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward. We show that a small upward buckling yields record electrical frequency tunability, whereas larger buckling can achieve Euler-Bernoulli bi-stability, the smallest mechanical resonator with two stable configurations to date. We believe that these recently-discovered carbon nanotube devices will open new avenues for realizing nano-sensors, mechanical memory elements and mechanical parametric amplifiers. Furthermore, we present a three-dimensional theoretical analysis revealing significant nonlinear coupling between the in-plane and out-of-plane static and dynamic modes of motion, and a unique three-dimensional Euler-Bernoulli snap-through transition. We utilize this coupling to provide a conclusive explanation for the low quality factor in carbon nanotube resonators at room temperature, key in understanding dissipation mechanisms at the nano scale.
Computing, memories, and digital electronics are based on the operation principle of bi-stable systems. Here, Yaish et al. report the unusual non-linear behaviour of buckled up carbon nanotubes mechanical resonators, which allows high electrical frequency tunability and snap-through bi-stability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36202803</pmid><doi>10.1038/s41467-022-33440-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7997-5457</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-10, Vol.13 (1), p.5900-5900, Article 5900 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_85d2a18c6b514aef904e8f5fc95fb57f |
source | PubMed Central(OpenAccess); Nature; ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/133 147/28 147/3 639/925/357/73 639/925/927/359 Buckling Carbon Carbon nanotubes Coupled modes Coupling Digital electronics Dissipation factor Humanities and Social Sciences multidisciplinary Nanoelectromechanical systems Nanosensors Nanotechnology Nanotubes Parametric amplifiers Quantum computing Resonators Room temperature Science Science (multidisciplinary) Sensors Theoretical analysis Three dimensional analysis Three dimensional motion |
title | Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode%20coupling%20bi-stability%20and%20spectral%20broadening%20in%20buckled%20carbon%20nanotube%20mechanical%20resonators&rft.jtitle=Nature%20communications&rft.au=Rechnitz,%20Sharon&rft.date=2022-10-06&rft.volume=13&rft.issue=1&rft.spage=5900&rft.epage=5900&rft.pages=5900-5900&rft.artnum=5900&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-33440-4&rft_dat=%3Cproquest_doaj_%3E2722021583%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2722021583&rft_id=info:pmid/36202803&rfr_iscdi=true |