Loading…

Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators

Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube re...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-10, Vol.13 (1), p.5900-5900, Article 5900
Main Authors: Rechnitz, Sharon, Tabachnik, Tal, Shlafman, Michael, Shlafman, Shlomo, Yaish, Yuval E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13
cites cdi_FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13
container_end_page 5900
container_issue 1
container_start_page 5900
container_title Nature communications
container_volume 13
creator Rechnitz, Sharon
Tabachnik, Tal
Shlafman, Michael
Shlafman, Shlomo
Yaish, Yuval E.
description Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward. We show that a small upward buckling yields record electrical frequency tunability, whereas larger buckling can achieve Euler-Bernoulli bi-stability, the smallest mechanical resonator with two stable configurations to date. We believe that these recently-discovered carbon nanotube devices will open new avenues for realizing nano-sensors, mechanical memory elements and mechanical parametric amplifiers. Furthermore, we present a three-dimensional theoretical analysis revealing significant nonlinear coupling between the in-plane and out-of-plane static and dynamic modes of motion, and a unique three-dimensional Euler-Bernoulli snap-through transition. We utilize this coupling to provide a conclusive explanation for the low quality factor in carbon nanotube resonators at room temperature, key in understanding dissipation mechanisms at the nano scale. Computing, memories, and digital electronics are based on the operation principle of bi-stable systems. Here, Yaish et al. report the unusual non-linear behaviour of buckled up carbon nanotubes mechanical resonators, which allows high electrical frequency tunability and snap-through bi-stability.
doi_str_mv 10.1038/s41467-022-33440-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_85d2a18c6b514aef904e8f5fc95fb57f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85d2a18c6b514aef904e8f5fc95fb57f</doaj_id><sourcerecordid>2722021583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhgdRbKn9A64CbtyMzedMshGkWC1U3Og65OPkNte5yTWZEfrvm-kUtS7MJuHkfR8O57xd95rgdwQzeVE54cPYY0p7xjjHPX_WnVLMSU9Gyp7_9T7pzmvd43aYIpLzl90JGyimErPTzn3JHpDLy3GKaYds7OtsbJzifIdM8qgewc3FTMiWbDykVRQTsov7MYFHzhSbE0om5XmxgA7gbk2KrhkK1JzMnEt91b0IZqpw_nifdd-vPn67_NzffP10ffnhpnecj3PPhRfKODxwrNQgRhADOMdHNRIvWTCG40GFwG2TC0ydk3LwlCkLhFgFhJ111xvXZ7PXxxIPptzpbKJ-KOSy06bM0U2gpfDUEOkGKwg3EBTmIIMITolgxRga6_3GOi72AN5BWqfwBPr0J8Vbvcu_tBJsFIo2wNtHQMk_F6izPsTqYJpMgrxUTdtmiBgwXft-8490n5eS2qhWVdsUEZI1Fd1UruRaC4TfzRCs10joLRK6RUI_RELzZmKbqTZx2kH5g_6P6x5uMLiy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722021583</pqid></control><display><type>article</type><title>Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators</title><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Rechnitz, Sharon ; Tabachnik, Tal ; Shlafman, Michael ; Shlafman, Shlomo ; Yaish, Yuval E.</creator><creatorcontrib>Rechnitz, Sharon ; Tabachnik, Tal ; Shlafman, Michael ; Shlafman, Shlomo ; Yaish, Yuval E.</creatorcontrib><description>Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward. We show that a small upward buckling yields record electrical frequency tunability, whereas larger buckling can achieve Euler-Bernoulli bi-stability, the smallest mechanical resonator with two stable configurations to date. We believe that these recently-discovered carbon nanotube devices will open new avenues for realizing nano-sensors, mechanical memory elements and mechanical parametric amplifiers. Furthermore, we present a three-dimensional theoretical analysis revealing significant nonlinear coupling between the in-plane and out-of-plane static and dynamic modes of motion, and a unique three-dimensional Euler-Bernoulli snap-through transition. We utilize this coupling to provide a conclusive explanation for the low quality factor in carbon nanotube resonators at room temperature, key in understanding dissipation mechanisms at the nano scale. Computing, memories, and digital electronics are based on the operation principle of bi-stable systems. Here, Yaish et al. report the unusual non-linear behaviour of buckled up carbon nanotubes mechanical resonators, which allows high electrical frequency tunability and snap-through bi-stability.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-33440-4</identifier><identifier>PMID: 36202803</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 147/28 ; 147/3 ; 639/925/357/73 ; 639/925/927/359 ; Buckling ; Carbon ; Carbon nanotubes ; Coupled modes ; Coupling ; Digital electronics ; Dissipation factor ; Humanities and Social Sciences ; multidisciplinary ; Nanoelectromechanical systems ; Nanosensors ; Nanotechnology ; Nanotubes ; Parametric amplifiers ; Quantum computing ; Resonators ; Room temperature ; Science ; Science (multidisciplinary) ; Sensors ; Theoretical analysis ; Three dimensional analysis ; Three dimensional motion</subject><ispartof>Nature communications, 2022-10, Vol.13 (1), p.5900-5900, Article 5900</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13</citedby><cites>FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13</cites><orcidid>0000-0001-7997-5457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2722021583/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2722021583?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Rechnitz, Sharon</creatorcontrib><creatorcontrib>Tabachnik, Tal</creatorcontrib><creatorcontrib>Shlafman, Michael</creatorcontrib><creatorcontrib>Shlafman, Shlomo</creatorcontrib><creatorcontrib>Yaish, Yuval E.</creatorcontrib><title>Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward. We show that a small upward buckling yields record electrical frequency tunability, whereas larger buckling can achieve Euler-Bernoulli bi-stability, the smallest mechanical resonator with two stable configurations to date. We believe that these recently-discovered carbon nanotube devices will open new avenues for realizing nano-sensors, mechanical memory elements and mechanical parametric amplifiers. Furthermore, we present a three-dimensional theoretical analysis revealing significant nonlinear coupling between the in-plane and out-of-plane static and dynamic modes of motion, and a unique three-dimensional Euler-Bernoulli snap-through transition. We utilize this coupling to provide a conclusive explanation for the low quality factor in carbon nanotube resonators at room temperature, key in understanding dissipation mechanisms at the nano scale. Computing, memories, and digital electronics are based on the operation principle of bi-stable systems. Here, Yaish et al. report the unusual non-linear behaviour of buckled up carbon nanotubes mechanical resonators, which allows high electrical frequency tunability and snap-through bi-stability.</description><subject>140/133</subject><subject>147/28</subject><subject>147/3</subject><subject>639/925/357/73</subject><subject>639/925/927/359</subject><subject>Buckling</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Coupled modes</subject><subject>Coupling</subject><subject>Digital electronics</subject><subject>Dissipation factor</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanoelectromechanical systems</subject><subject>Nanosensors</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Parametric amplifiers</subject><subject>Quantum computing</subject><subject>Resonators</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Theoretical analysis</subject><subject>Three dimensional analysis</subject><subject>Three dimensional motion</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1rFTEUhgdRbKn9A64CbtyMzedMshGkWC1U3Og65OPkNte5yTWZEfrvm-kUtS7MJuHkfR8O57xd95rgdwQzeVE54cPYY0p7xjjHPX_WnVLMSU9Gyp7_9T7pzmvd43aYIpLzl90JGyimErPTzn3JHpDLy3GKaYds7OtsbJzifIdM8qgewc3FTMiWbDykVRQTsov7MYFHzhSbE0om5XmxgA7gbk2KrhkK1JzMnEt91b0IZqpw_nifdd-vPn67_NzffP10ffnhpnecj3PPhRfKODxwrNQgRhADOMdHNRIvWTCG40GFwG2TC0ydk3LwlCkLhFgFhJ111xvXZ7PXxxIPptzpbKJ-KOSy06bM0U2gpfDUEOkGKwg3EBTmIIMITolgxRga6_3GOi72AN5BWqfwBPr0J8Vbvcu_tBJsFIo2wNtHQMk_F6izPsTqYJpMgrxUTdtmiBgwXft-8490n5eS2qhWVdsUEZI1Fd1UruRaC4TfzRCs10joLRK6RUI_RELzZmKbqTZx2kH5g_6P6x5uMLiy</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>Rechnitz, Sharon</creator><creator>Tabachnik, Tal</creator><creator>Shlafman, Michael</creator><creator>Shlafman, Shlomo</creator><creator>Yaish, Yuval E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7997-5457</orcidid></search><sort><creationdate>20221006</creationdate><title>Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators</title><author>Rechnitz, Sharon ; Tabachnik, Tal ; Shlafman, Michael ; Shlafman, Shlomo ; Yaish, Yuval E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/133</topic><topic>147/28</topic><topic>147/3</topic><topic>639/925/357/73</topic><topic>639/925/927/359</topic><topic>Buckling</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Coupled modes</topic><topic>Coupling</topic><topic>Digital electronics</topic><topic>Dissipation factor</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanoelectromechanical systems</topic><topic>Nanosensors</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Parametric amplifiers</topic><topic>Quantum computing</topic><topic>Resonators</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Theoretical analysis</topic><topic>Three dimensional analysis</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rechnitz, Sharon</creatorcontrib><creatorcontrib>Tabachnik, Tal</creatorcontrib><creatorcontrib>Shlafman, Michael</creatorcontrib><creatorcontrib>Shlafman, Shlomo</creatorcontrib><creatorcontrib>Yaish, Yuval E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rechnitz, Sharon</au><au>Tabachnik, Tal</au><au>Shlafman, Michael</au><au>Shlafman, Shlomo</au><au>Yaish, Yuval E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2022-10-06</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>5900</spage><epage>5900</epage><pages>5900-5900</pages><artnum>5900</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward. We show that a small upward buckling yields record electrical frequency tunability, whereas larger buckling can achieve Euler-Bernoulli bi-stability, the smallest mechanical resonator with two stable configurations to date. We believe that these recently-discovered carbon nanotube devices will open new avenues for realizing nano-sensors, mechanical memory elements and mechanical parametric amplifiers. Furthermore, we present a three-dimensional theoretical analysis revealing significant nonlinear coupling between the in-plane and out-of-plane static and dynamic modes of motion, and a unique three-dimensional Euler-Bernoulli snap-through transition. We utilize this coupling to provide a conclusive explanation for the low quality factor in carbon nanotube resonators at room temperature, key in understanding dissipation mechanisms at the nano scale. Computing, memories, and digital electronics are based on the operation principle of bi-stable systems. Here, Yaish et al. report the unusual non-linear behaviour of buckled up carbon nanotubes mechanical resonators, which allows high electrical frequency tunability and snap-through bi-stability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36202803</pmid><doi>10.1038/s41467-022-33440-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7997-5457</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-10, Vol.13 (1), p.5900-5900, Article 5900
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_85d2a18c6b514aef904e8f5fc95fb57f
source PubMed Central(OpenAccess); Nature; ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/133
147/28
147/3
639/925/357/73
639/925/927/359
Buckling
Carbon
Carbon nanotubes
Coupled modes
Coupling
Digital electronics
Dissipation factor
Humanities and Social Sciences
multidisciplinary
Nanoelectromechanical systems
Nanosensors
Nanotechnology
Nanotubes
Parametric amplifiers
Quantum computing
Resonators
Room temperature
Science
Science (multidisciplinary)
Sensors
Theoretical analysis
Three dimensional analysis
Three dimensional motion
title Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode%20coupling%20bi-stability%20and%20spectral%20broadening%20in%20buckled%20carbon%20nanotube%20mechanical%20resonators&rft.jtitle=Nature%20communications&rft.au=Rechnitz,%20Sharon&rft.date=2022-10-06&rft.volume=13&rft.issue=1&rft.spage=5900&rft.epage=5900&rft.pages=5900-5900&rft.artnum=5900&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-33440-4&rft_dat=%3Cproquest_doaj_%3E2722021583%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-45d59ac064099657e56ecc47971d83faa4069ff4bc44502cc886d239be11b9e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2722021583&rft_id=info:pmid/36202803&rfr_iscdi=true