Loading…

Plasmonic Nanopillars-A Brief Investigation of Fabrication Techniques and Biological Applications

Nanopillars (NPs) are submicron-sized pillars composed of dielectrics, semiconductors, or metals. They have been employed to develop advanced optical components such as solar cells, light-emitting diodes, and biophotonic devices. To integrate localized surface plasmon resonance (LSPR) with NPs, plas...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors (Basel) 2023-05, Vol.13 (5), p.534
Main Authors: Ahn, Heesang, Kim, Soojung, Oh, Sung Suk, Park, Mihee, Kim, Seungchul, Choi, Jong-Ryul, Kim, Kyujung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c436t-1d525484f4b810e9ec0a7c99002c762c17c7cd95f1b6afe462548956297796123
container_end_page
container_issue 5
container_start_page 534
container_title Biosensors (Basel)
container_volume 13
creator Ahn, Heesang
Kim, Soojung
Oh, Sung Suk
Park, Mihee
Kim, Seungchul
Choi, Jong-Ryul
Kim, Kyujung
description Nanopillars (NPs) are submicron-sized pillars composed of dielectrics, semiconductors, or metals. They have been employed to develop advanced optical components such as solar cells, light-emitting diodes, and biophotonic devices. To integrate localized surface plasmon resonance (LSPR) with NPs, plasmonic NPs consisting of dielectric nanoscale pillars with metal capping have been developed and used for plasmonic optical sensing and imaging applications. In this study, we studied plasmonic NPs in terms of their fabrication techniques and applications in biophotonics. We briefly described three methods for fabricating NPs, namely etching, nanoimprinting, and growing NPs on a substrate. Furthermore, we explored the role of metal capping in plasmonic enhancement. Then, we presented the biophotonic applications of high-sensitivity LSPR sensors, enhanced Raman spectroscopy, and high-resolution plasmonic optical imaging. After exploring plasmonic NPs, we determined that they had sufficient potential for advanced biophotonic instruments and biomedical applications.
doi_str_mv 10.3390/bios13050534
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_85e7cfc821164548bcbc8c1a93fd519d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85e7cfc821164548bcbc8c1a93fd519d</doaj_id><sourcerecordid>2820015518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-1d525484f4b810e9ec0a7c99002c762c17c7cd95f1b6afe462548956297796123</originalsourceid><addsrcrecordid>eNpdkktvEzEURq0K1FalO9ZoJDYsGPDb4xVKqxYiVcCirC3PHU_qyLEHe1KJf1-HhCrFGz_u0ZH9-SL0luBPjGn8ufepEIYFFoyfoHOKlW4lU_zV0foMXZayxnUorjRTp-iMKcpop-U5sj-DLZsUPTTfbUyTD8Hm0i6aq-zd2CzjoyuzX9nZp9iksbm1ffaw3947eIj-99aVxsahufIppFUthmYxTeFAlTfo9WhDcZeH-QL9ur25v_7W3v34urxe3LXAmZxbMggqeMdH3ncEO-0AWwVaY0xBSQpEgYJBi5H00o6Oyx2thaRaKS0JZRdoufcOya7NlP3G5j8mWW_-HqS8MjbPHoIznXAKRugoIZJXTQ89dECsZuMgiB6q68veNW37jRvAxTnb8EL6shL9g1mlR0MwJVJhXg0fDoacdgnNZuMLuJpudGlbDO0oxkQI0lX0_X_oOm1zrFlVimgmMaGqUh_3FORUSnbj820INrteMMe9UPF3xy94hv_9PHsCutavPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819360127</pqid></control><display><type>article</type><title>Plasmonic Nanopillars-A Brief Investigation of Fabrication Techniques and Biological Applications</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ahn, Heesang ; Kim, Soojung ; Oh, Sung Suk ; Park, Mihee ; Kim, Seungchul ; Choi, Jong-Ryul ; Kim, Kyujung</creator><creatorcontrib>Ahn, Heesang ; Kim, Soojung ; Oh, Sung Suk ; Park, Mihee ; Kim, Seungchul ; Choi, Jong-Ryul ; Kim, Kyujung</creatorcontrib><description>Nanopillars (NPs) are submicron-sized pillars composed of dielectrics, semiconductors, or metals. They have been employed to develop advanced optical components such as solar cells, light-emitting diodes, and biophotonic devices. To integrate localized surface plasmon resonance (LSPR) with NPs, plasmonic NPs consisting of dielectric nanoscale pillars with metal capping have been developed and used for plasmonic optical sensing and imaging applications. In this study, we studied plasmonic NPs in terms of their fabrication techniques and applications in biophotonics. We briefly described three methods for fabricating NPs, namely etching, nanoimprinting, and growing NPs on a substrate. Furthermore, we explored the role of metal capping in plasmonic enhancement. Then, we presented the biophotonic applications of high-sensitivity LSPR sensors, enhanced Raman spectroscopy, and high-resolution plasmonic optical imaging. After exploring plasmonic NPs, we determined that they had sufficient potential for advanced biophotonic instruments and biomedical applications.</description><identifier>ISSN: 2079-6374</identifier><identifier>EISSN: 2079-6374</identifier><identifier>DOI: 10.3390/bios13050534</identifier><identifier>PMID: 37232896</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Arrays ; Biomedical materials ; Capping ; Electromagnetism ; enhanced Raman spectroscopy ; Etching ; Fabrication ; Glass substrates ; high-resolution optical imaging ; Image resolution ; Light ; Light emitting diodes ; localized surface plasmon resonance ; Metal Nanoparticles - chemistry ; Metals ; Metals - chemistry ; Nanoparticles ; Optical components ; Optical Imaging ; optical sensing ; Photovoltaic cells ; plasmonic nanopillars ; Plasmonics ; Polymers ; Raman spectroscopy ; Research methodology ; Review ; Sensitivity enhancement ; Sensors ; Solar cells ; Spectrum Analysis, Raman ; Substrates ; Surface plasmon resonance ; Surface Plasmon Resonance - methods</subject><ispartof>Biosensors (Basel), 2023-05, Vol.13 (5), p.534</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c436t-1d525484f4b810e9ec0a7c99002c762c17c7cd95f1b6afe462548956297796123</cites><orcidid>0000-0002-6645-6399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819360127/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819360127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25735,27906,27907,36994,36995,44572,53773,53775,74876</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37232896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Heesang</creatorcontrib><creatorcontrib>Kim, Soojung</creatorcontrib><creatorcontrib>Oh, Sung Suk</creatorcontrib><creatorcontrib>Park, Mihee</creatorcontrib><creatorcontrib>Kim, Seungchul</creatorcontrib><creatorcontrib>Choi, Jong-Ryul</creatorcontrib><creatorcontrib>Kim, Kyujung</creatorcontrib><title>Plasmonic Nanopillars-A Brief Investigation of Fabrication Techniques and Biological Applications</title><title>Biosensors (Basel)</title><addtitle>Biosensors (Basel)</addtitle><description>Nanopillars (NPs) are submicron-sized pillars composed of dielectrics, semiconductors, or metals. They have been employed to develop advanced optical components such as solar cells, light-emitting diodes, and biophotonic devices. To integrate localized surface plasmon resonance (LSPR) with NPs, plasmonic NPs consisting of dielectric nanoscale pillars with metal capping have been developed and used for plasmonic optical sensing and imaging applications. In this study, we studied plasmonic NPs in terms of their fabrication techniques and applications in biophotonics. We briefly described three methods for fabricating NPs, namely etching, nanoimprinting, and growing NPs on a substrate. Furthermore, we explored the role of metal capping in plasmonic enhancement. Then, we presented the biophotonic applications of high-sensitivity LSPR sensors, enhanced Raman spectroscopy, and high-resolution plasmonic optical imaging. After exploring plasmonic NPs, we determined that they had sufficient potential for advanced biophotonic instruments and biomedical applications.</description><subject>Arrays</subject><subject>Biomedical materials</subject><subject>Capping</subject><subject>Electromagnetism</subject><subject>enhanced Raman spectroscopy</subject><subject>Etching</subject><subject>Fabrication</subject><subject>Glass substrates</subject><subject>high-resolution optical imaging</subject><subject>Image resolution</subject><subject>Light</subject><subject>Light emitting diodes</subject><subject>localized surface plasmon resonance</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metals</subject><subject>Metals - chemistry</subject><subject>Nanoparticles</subject><subject>Optical components</subject><subject>Optical Imaging</subject><subject>optical sensing</subject><subject>Photovoltaic cells</subject><subject>plasmonic nanopillars</subject><subject>Plasmonics</subject><subject>Polymers</subject><subject>Raman spectroscopy</subject><subject>Research methodology</subject><subject>Review</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Solar cells</subject><subject>Spectrum Analysis, Raman</subject><subject>Substrates</subject><subject>Surface plasmon resonance</subject><subject>Surface Plasmon Resonance - methods</subject><issn>2079-6374</issn><issn>2079-6374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEURq0K1FalO9ZoJDYsGPDb4xVKqxYiVcCirC3PHU_qyLEHe1KJf1-HhCrFGz_u0ZH9-SL0luBPjGn8ufepEIYFFoyfoHOKlW4lU_zV0foMXZayxnUorjRTp-iMKcpop-U5sj-DLZsUPTTfbUyTD8Hm0i6aq-zd2CzjoyuzX9nZp9iksbm1ffaw3947eIj-99aVxsahufIppFUthmYxTeFAlTfo9WhDcZeH-QL9ur25v_7W3v34urxe3LXAmZxbMggqeMdH3ncEO-0AWwVaY0xBSQpEgYJBi5H00o6Oyx2thaRaKS0JZRdoufcOya7NlP3G5j8mWW_-HqS8MjbPHoIznXAKRugoIZJXTQ89dECsZuMgiB6q68veNW37jRvAxTnb8EL6shL9g1mlR0MwJVJhXg0fDoacdgnNZuMLuJpudGlbDO0oxkQI0lX0_X_oOm1zrFlVimgmMaGqUh_3FORUSnbj820INrteMMe9UPF3xy94hv_9PHsCutavPQ</recordid><startdate>20230510</startdate><enddate>20230510</enddate><creator>Ahn, Heesang</creator><creator>Kim, Soojung</creator><creator>Oh, Sung Suk</creator><creator>Park, Mihee</creator><creator>Kim, Seungchul</creator><creator>Choi, Jong-Ryul</creator><creator>Kim, Kyujung</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6645-6399</orcidid></search><sort><creationdate>20230510</creationdate><title>Plasmonic Nanopillars-A Brief Investigation of Fabrication Techniques and Biological Applications</title><author>Ahn, Heesang ; Kim, Soojung ; Oh, Sung Suk ; Park, Mihee ; Kim, Seungchul ; Choi, Jong-Ryul ; Kim, Kyujung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-1d525484f4b810e9ec0a7c99002c762c17c7cd95f1b6afe462548956297796123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Biomedical materials</topic><topic>Capping</topic><topic>Electromagnetism</topic><topic>enhanced Raman spectroscopy</topic><topic>Etching</topic><topic>Fabrication</topic><topic>Glass substrates</topic><topic>high-resolution optical imaging</topic><topic>Image resolution</topic><topic>Light</topic><topic>Light emitting diodes</topic><topic>localized surface plasmon resonance</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metals</topic><topic>Metals - chemistry</topic><topic>Nanoparticles</topic><topic>Optical components</topic><topic>Optical Imaging</topic><topic>optical sensing</topic><topic>Photovoltaic cells</topic><topic>plasmonic nanopillars</topic><topic>Plasmonics</topic><topic>Polymers</topic><topic>Raman spectroscopy</topic><topic>Research methodology</topic><topic>Review</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Solar cells</topic><topic>Spectrum Analysis, Raman</topic><topic>Substrates</topic><topic>Surface plasmon resonance</topic><topic>Surface Plasmon Resonance - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Heesang</creatorcontrib><creatorcontrib>Kim, Soojung</creatorcontrib><creatorcontrib>Oh, Sung Suk</creatorcontrib><creatorcontrib>Park, Mihee</creatorcontrib><creatorcontrib>Kim, Seungchul</creatorcontrib><creatorcontrib>Choi, Jong-Ryul</creatorcontrib><creatorcontrib>Kim, Kyujung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biosensors (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Heesang</au><au>Kim, Soojung</au><au>Oh, Sung Suk</au><au>Park, Mihee</au><au>Kim, Seungchul</au><au>Choi, Jong-Ryul</au><au>Kim, Kyujung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Nanopillars-A Brief Investigation of Fabrication Techniques and Biological Applications</atitle><jtitle>Biosensors (Basel)</jtitle><addtitle>Biosensors (Basel)</addtitle><date>2023-05-10</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>534</spage><pages>534-</pages><issn>2079-6374</issn><eissn>2079-6374</eissn><abstract>Nanopillars (NPs) are submicron-sized pillars composed of dielectrics, semiconductors, or metals. They have been employed to develop advanced optical components such as solar cells, light-emitting diodes, and biophotonic devices. To integrate localized surface plasmon resonance (LSPR) with NPs, plasmonic NPs consisting of dielectric nanoscale pillars with metal capping have been developed and used for plasmonic optical sensing and imaging applications. In this study, we studied plasmonic NPs in terms of their fabrication techniques and applications in biophotonics. We briefly described three methods for fabricating NPs, namely etching, nanoimprinting, and growing NPs on a substrate. Furthermore, we explored the role of metal capping in plasmonic enhancement. Then, we presented the biophotonic applications of high-sensitivity LSPR sensors, enhanced Raman spectroscopy, and high-resolution plasmonic optical imaging. After exploring plasmonic NPs, we determined that they had sufficient potential for advanced biophotonic instruments and biomedical applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37232896</pmid><doi>10.3390/bios13050534</doi><orcidid>https://orcid.org/0000-0002-6645-6399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6374
ispartof Biosensors (Basel), 2023-05, Vol.13 (5), p.534
issn 2079-6374
2079-6374
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_85e7cfc821164548bcbc8c1a93fd519d
source Publicly Available Content Database; PubMed Central
subjects Arrays
Biomedical materials
Capping
Electromagnetism
enhanced Raman spectroscopy
Etching
Fabrication
Glass substrates
high-resolution optical imaging
Image resolution
Light
Light emitting diodes
localized surface plasmon resonance
Metal Nanoparticles - chemistry
Metals
Metals - chemistry
Nanoparticles
Optical components
Optical Imaging
optical sensing
Photovoltaic cells
plasmonic nanopillars
Plasmonics
Polymers
Raman spectroscopy
Research methodology
Review
Sensitivity enhancement
Sensors
Solar cells
Spectrum Analysis, Raman
Substrates
Surface plasmon resonance
Surface Plasmon Resonance - methods
title Plasmonic Nanopillars-A Brief Investigation of Fabrication Techniques and Biological Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Nanopillars-A%20Brief%20Investigation%20of%20Fabrication%20Techniques%20and%20Biological%20Applications&rft.jtitle=Biosensors%20(Basel)&rft.au=Ahn,%20Heesang&rft.date=2023-05-10&rft.volume=13&rft.issue=5&rft.spage=534&rft.pages=534-&rft.issn=2079-6374&rft.eissn=2079-6374&rft_id=info:doi/10.3390/bios13050534&rft_dat=%3Cproquest_doaj_%3E2820015518%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-1d525484f4b810e9ec0a7c99002c762c17c7cd95f1b6afe462548956297796123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819360127&rft_id=info:pmid/37232896&rfr_iscdi=true