Loading…
Mesoatom alloys via self-sorting approach of giant molecules blends
The bottom-up construction of Frank–Kasper (FK) phases in soft matter requires intricating tuning to balance entropic and enthalpic interactions. In contrast, sophisticated rules have been established in Metallurgy to dictate the packing structures of metal alloys. Inspired by alloy metallurgy, we d...
Saved in:
Published in: | Giant (Oxford, England) England), 2020-12, Vol.4, p.100031, Article 100031 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The bottom-up construction of Frank–Kasper (FK) phases in soft matter requires intricating tuning to balance entropic and enthalpic interactions. In contrast, sophisticated rules have been established in Metallurgy to dictate the packing structures of metal alloys. Inspired by alloy metallurgy, we develop a new self-sorting approach to construct nanostructures in condensed soft matters. This approach utilizes blends of nano-sized giant molecules to construct supramolecular motifs (“mesoatoms”) with controlled size heterogeneity, which is the key in rational design of diverse FK nanostructures. Especially, the scarcely observed thermodynamically stable Laves C14 and C15 phases are widely found. This approach sheds light on next-generation material engineering which allows nanostructure construction in a more predictable and straightforward way
[Display omitted] |
---|---|
ISSN: | 2666-5425 2666-5425 |
DOI: | 10.1016/j.giant.2020.100031 |