Loading…

Synchrotron Radiation-Based FTIR Microspectroscopic Imaging of Traumatically Injured Mouse Brain Tissue Slices

Traumatic brain injury (TBI) is a health problem of global concern because of its serious adverse effects on public health and social economy. A technique that can be used to precisely detect TBI is highly demanded. Here, we report on a synchrotron radiation-based Fourier transform infrared (SR-FTIR...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2020-11, Vol.5 (46), p.29698-29705
Main Authors: Guo, Yuansen, Chen, Tunan, Wang, Shi, Zhou, Xiaojie, Zhang, Hua, Li, Dandan, Mu, Ning, Tang, Mingjie, Hu, Meidie, Tang, Dongyun, Yang, Zhongbo, Zhong, Jiajia, Tang, Yuzhao, Feng, Hua, Zhang, Xuehua, Wang, Huabin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a476t-91939711bf0bfc2395e0289b37b3f7993a71a2d299338b61b61f047d9c6be94a3
cites cdi_FETCH-LOGICAL-a476t-91939711bf0bfc2395e0289b37b3f7993a71a2d299338b61b61f047d9c6be94a3
container_end_page 29705
container_issue 46
container_start_page 29698
container_title ACS omega
container_volume 5
creator Guo, Yuansen
Chen, Tunan
Wang, Shi
Zhou, Xiaojie
Zhang, Hua
Li, Dandan
Mu, Ning
Tang, Mingjie
Hu, Meidie
Tang, Dongyun
Yang, Zhongbo
Zhong, Jiajia
Tang, Yuzhao
Feng, Hua
Zhang, Xuehua
Wang, Huabin
description Traumatic brain injury (TBI) is a health problem of global concern because of its serious adverse effects on public health and social economy. A technique that can be used to precisely detect TBI is highly demanded. Here, we report on a synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopic imaging technique that can be exploited to identify TBI-induced injury by examining model mouse brain tissue slices. The samples were first examined by conventional histopathological techniques including hematoxylin and eosin (H&E) staining and 2,3,5-triphenyltetrazolium chloride staining and then spectroscopically imaged by SR-FTIR. SR-FTIR results show that the contents of protein and nucleic acid in the injured region are lower than their counterparts in the normal region. The injured and normal regions can be unambiguously distinguished from each other by the principle component analysis of the SR-FTIR spectral data corresponding to protein or nucleic acid. The images built from the spectral data of protein or nucleic acid clearly present the injured region of the brain tissue, which is in good agreement with the H&E staining image and optical image of the sample. Given the label-free and fingerprint features, the demonstrated method suggests potential application of SR-FTIR spectroscopic mapping for the digital and intelligent diagnosis of TBI by providing spatial and chemical information of the sample simultaneously.
doi_str_mv 10.1021/acsomega.0c03285
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_864dbddf1d73418d824a2901daad8bc8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_864dbddf1d73418d824a2901daad8bc8</doaj_id><sourcerecordid>2465755270</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-91939711bf0bfc2395e0289b37b3f7993a71a2d299338b61b61f047d9c6be94a3</originalsourceid><addsrcrecordid>eNp1kc1r3DAQxU1paUKae4869lAn-rIlXQpNaFpDQiHZnsVYkh0ttrSV7ML-91W6m9IcCgINmvd-I95U1XuCLwim5BJMjrMb4QIbzKhsXlWnlAtcE8bZ63_qk-o85y3GmLSSStq-rU4Yow3huDmtwsM-mMcUlxQDugfrYfEx1FeQnUU3m-4e3XmTYt45UyTZxJ03qJth9GFEcUCbBOtcPAamaY-6sF1TMd7FNTt0lcAHtPE5rw49TN64_K56M8CU3fnxPqt-3HzZXH-rb79_7a4_39bARbvUiiimBCH9gPvBUKYah6lUPRM9G4RSDAQBammpmOxbUs6AubDKtL1THNhZ1R24NsJW75KfIe11BK__PMQ0akjl15PTsuW2t3YgVjBOpJWUA1WYWAAreyML69OBtVv72VnjwpJgegF92Qn-UY_xlxatVG1LCuDDEZDiz9XlRc8-GzdNEFwJSlPeNqJpqMBFig_Sp8xzcsPfMQTrp63r563r49aL5ePBUjp6G9cUSrD_l_8GglCwsw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465755270</pqid></control><display><type>article</type><title>Synchrotron Radiation-Based FTIR Microspectroscopic Imaging of Traumatically Injured Mouse Brain Tissue Slices</title><source>PubMed Central Free</source><source>American Chemical Society (ACS) Open Access</source><creator>Guo, Yuansen ; Chen, Tunan ; Wang, Shi ; Zhou, Xiaojie ; Zhang, Hua ; Li, Dandan ; Mu, Ning ; Tang, Mingjie ; Hu, Meidie ; Tang, Dongyun ; Yang, Zhongbo ; Zhong, Jiajia ; Tang, Yuzhao ; Feng, Hua ; Zhang, Xuehua ; Wang, Huabin</creator><creatorcontrib>Guo, Yuansen ; Chen, Tunan ; Wang, Shi ; Zhou, Xiaojie ; Zhang, Hua ; Li, Dandan ; Mu, Ning ; Tang, Mingjie ; Hu, Meidie ; Tang, Dongyun ; Yang, Zhongbo ; Zhong, Jiajia ; Tang, Yuzhao ; Feng, Hua ; Zhang, Xuehua ; Wang, Huabin</creatorcontrib><description>Traumatic brain injury (TBI) is a health problem of global concern because of its serious adverse effects on public health and social economy. A technique that can be used to precisely detect TBI is highly demanded. Here, we report on a synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopic imaging technique that can be exploited to identify TBI-induced injury by examining model mouse brain tissue slices. The samples were first examined by conventional histopathological techniques including hematoxylin and eosin (H&amp;E) staining and 2,3,5-triphenyltetrazolium chloride staining and then spectroscopically imaged by SR-FTIR. SR-FTIR results show that the contents of protein and nucleic acid in the injured region are lower than their counterparts in the normal region. The injured and normal regions can be unambiguously distinguished from each other by the principle component analysis of the SR-FTIR spectral data corresponding to protein or nucleic acid. The images built from the spectral data of protein or nucleic acid clearly present the injured region of the brain tissue, which is in good agreement with the H&amp;E staining image and optical image of the sample. Given the label-free and fingerprint features, the demonstrated method suggests potential application of SR-FTIR spectroscopic mapping for the digital and intelligent diagnosis of TBI by providing spatial and chemical information of the sample simultaneously.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.0c03285</identifier><identifier>PMID: 33251405</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS omega, 2020-11, Vol.5 (46), p.29698-29705</ispartof><rights>2020 American Chemical Society</rights><rights>2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-91939711bf0bfc2395e0289b37b3f7993a71a2d299338b61b61f047d9c6be94a3</citedby><cites>FETCH-LOGICAL-a476t-91939711bf0bfc2395e0289b37b3f7993a71a2d299338b61b61f047d9c6be94a3</cites><orcidid>0000-0001-5342-0672 ; 0000-0001-6093-5324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.0c03285$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.0c03285$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27080,27924,27925,53791,53793,56762,56812</link.rule.ids></links><search><creatorcontrib>Guo, Yuansen</creatorcontrib><creatorcontrib>Chen, Tunan</creatorcontrib><creatorcontrib>Wang, Shi</creatorcontrib><creatorcontrib>Zhou, Xiaojie</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Mu, Ning</creatorcontrib><creatorcontrib>Tang, Mingjie</creatorcontrib><creatorcontrib>Hu, Meidie</creatorcontrib><creatorcontrib>Tang, Dongyun</creatorcontrib><creatorcontrib>Yang, Zhongbo</creatorcontrib><creatorcontrib>Zhong, Jiajia</creatorcontrib><creatorcontrib>Tang, Yuzhao</creatorcontrib><creatorcontrib>Feng, Hua</creatorcontrib><creatorcontrib>Zhang, Xuehua</creatorcontrib><creatorcontrib>Wang, Huabin</creatorcontrib><title>Synchrotron Radiation-Based FTIR Microspectroscopic Imaging of Traumatically Injured Mouse Brain Tissue Slices</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>Traumatic brain injury (TBI) is a health problem of global concern because of its serious adverse effects on public health and social economy. A technique that can be used to precisely detect TBI is highly demanded. Here, we report on a synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopic imaging technique that can be exploited to identify TBI-induced injury by examining model mouse brain tissue slices. The samples were first examined by conventional histopathological techniques including hematoxylin and eosin (H&amp;E) staining and 2,3,5-triphenyltetrazolium chloride staining and then spectroscopically imaged by SR-FTIR. SR-FTIR results show that the contents of protein and nucleic acid in the injured region are lower than their counterparts in the normal region. The injured and normal regions can be unambiguously distinguished from each other by the principle component analysis of the SR-FTIR spectral data corresponding to protein or nucleic acid. The images built from the spectral data of protein or nucleic acid clearly present the injured region of the brain tissue, which is in good agreement with the H&amp;E staining image and optical image of the sample. Given the label-free and fingerprint features, the demonstrated method suggests potential application of SR-FTIR spectroscopic mapping for the digital and intelligent diagnosis of TBI by providing spatial and chemical information of the sample simultaneously.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1r3DAQxU1paUKae4869lAn-rIlXQpNaFpDQiHZnsVYkh0ttrSV7ML-91W6m9IcCgINmvd-I95U1XuCLwim5BJMjrMb4QIbzKhsXlWnlAtcE8bZ63_qk-o85y3GmLSSStq-rU4Yow3huDmtwsM-mMcUlxQDugfrYfEx1FeQnUU3m-4e3XmTYt45UyTZxJ03qJth9GFEcUCbBOtcPAamaY-6sF1TMd7FNTt0lcAHtPE5rw49TN64_K56M8CU3fnxPqt-3HzZXH-rb79_7a4_39bARbvUiiimBCH9gPvBUKYah6lUPRM9G4RSDAQBammpmOxbUs6AubDKtL1THNhZ1R24NsJW75KfIe11BK__PMQ0akjl15PTsuW2t3YgVjBOpJWUA1WYWAAreyML69OBtVv72VnjwpJgegF92Qn-UY_xlxatVG1LCuDDEZDiz9XlRc8-GzdNEFwJSlPeNqJpqMBFig_Sp8xzcsPfMQTrp63r563r49aL5ePBUjp6G9cUSrD_l_8GglCwsw</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Guo, Yuansen</creator><creator>Chen, Tunan</creator><creator>Wang, Shi</creator><creator>Zhou, Xiaojie</creator><creator>Zhang, Hua</creator><creator>Li, Dandan</creator><creator>Mu, Ning</creator><creator>Tang, Mingjie</creator><creator>Hu, Meidie</creator><creator>Tang, Dongyun</creator><creator>Yang, Zhongbo</creator><creator>Zhong, Jiajia</creator><creator>Tang, Yuzhao</creator><creator>Feng, Hua</creator><creator>Zhang, Xuehua</creator><creator>Wang, Huabin</creator><general>American Chemical Society</general><scope>N~.</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5342-0672</orcidid><orcidid>https://orcid.org/0000-0001-6093-5324</orcidid></search><sort><creationdate>20201124</creationdate><title>Synchrotron Radiation-Based FTIR Microspectroscopic Imaging of Traumatically Injured Mouse Brain Tissue Slices</title><author>Guo, Yuansen ; Chen, Tunan ; Wang, Shi ; Zhou, Xiaojie ; Zhang, Hua ; Li, Dandan ; Mu, Ning ; Tang, Mingjie ; Hu, Meidie ; Tang, Dongyun ; Yang, Zhongbo ; Zhong, Jiajia ; Tang, Yuzhao ; Feng, Hua ; Zhang, Xuehua ; Wang, Huabin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-91939711bf0bfc2395e0289b37b3f7993a71a2d299338b61b61f047d9c6be94a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yuansen</creatorcontrib><creatorcontrib>Chen, Tunan</creatorcontrib><creatorcontrib>Wang, Shi</creatorcontrib><creatorcontrib>Zhou, Xiaojie</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Mu, Ning</creatorcontrib><creatorcontrib>Tang, Mingjie</creatorcontrib><creatorcontrib>Hu, Meidie</creatorcontrib><creatorcontrib>Tang, Dongyun</creatorcontrib><creatorcontrib>Yang, Zhongbo</creatorcontrib><creatorcontrib>Zhong, Jiajia</creatorcontrib><creatorcontrib>Tang, Yuzhao</creatorcontrib><creatorcontrib>Feng, Hua</creatorcontrib><creatorcontrib>Zhang, Xuehua</creatorcontrib><creatorcontrib>Wang, Huabin</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yuansen</au><au>Chen, Tunan</au><au>Wang, Shi</au><au>Zhou, Xiaojie</au><au>Zhang, Hua</au><au>Li, Dandan</au><au>Mu, Ning</au><au>Tang, Mingjie</au><au>Hu, Meidie</au><au>Tang, Dongyun</au><au>Yang, Zhongbo</au><au>Zhong, Jiajia</au><au>Tang, Yuzhao</au><au>Feng, Hua</au><au>Zhang, Xuehua</au><au>Wang, Huabin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchrotron Radiation-Based FTIR Microspectroscopic Imaging of Traumatically Injured Mouse Brain Tissue Slices</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2020-11-24</date><risdate>2020</risdate><volume>5</volume><issue>46</issue><spage>29698</spage><epage>29705</epage><pages>29698-29705</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Traumatic brain injury (TBI) is a health problem of global concern because of its serious adverse effects on public health and social economy. A technique that can be used to precisely detect TBI is highly demanded. Here, we report on a synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopic imaging technique that can be exploited to identify TBI-induced injury by examining model mouse brain tissue slices. The samples were first examined by conventional histopathological techniques including hematoxylin and eosin (H&amp;E) staining and 2,3,5-triphenyltetrazolium chloride staining and then spectroscopically imaged by SR-FTIR. SR-FTIR results show that the contents of protein and nucleic acid in the injured region are lower than their counterparts in the normal region. The injured and normal regions can be unambiguously distinguished from each other by the principle component analysis of the SR-FTIR spectral data corresponding to protein or nucleic acid. The images built from the spectral data of protein or nucleic acid clearly present the injured region of the brain tissue, which is in good agreement with the H&amp;E staining image and optical image of the sample. Given the label-free and fingerprint features, the demonstrated method suggests potential application of SR-FTIR spectroscopic mapping for the digital and intelligent diagnosis of TBI by providing spatial and chemical information of the sample simultaneously.</abstract><pub>American Chemical Society</pub><pmid>33251405</pmid><doi>10.1021/acsomega.0c03285</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5342-0672</orcidid><orcidid>https://orcid.org/0000-0001-6093-5324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2020-11, Vol.5 (46), p.29698-29705
issn 2470-1343
2470-1343
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_864dbddf1d73418d824a2901daad8bc8
source PubMed Central Free; American Chemical Society (ACS) Open Access
title Synchrotron Radiation-Based FTIR Microspectroscopic Imaging of Traumatically Injured Mouse Brain Tissue Slices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchrotron%20Radiation-Based%20FTIR%20Microspectroscopic%20Imaging%20of%20Traumatically%20Injured%20Mouse%20Brain%20Tissue%20Slices&rft.jtitle=ACS%20omega&rft.au=Guo,%20Yuansen&rft.date=2020-11-24&rft.volume=5&rft.issue=46&rft.spage=29698&rft.epage=29705&rft.pages=29698-29705&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.0c03285&rft_dat=%3Cproquest_doaj_%3E2465755270%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a476t-91939711bf0bfc2395e0289b37b3f7993a71a2d299338b61b61f047d9c6be94a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465755270&rft_id=info:pmid/33251405&rfr_iscdi=true