Loading…

Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms

In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secu...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) 2021-12, Vol.12 (12), p.532
Main Authors: Elordi, Unai, Lunerti, Chiara, Unzueta, Luis, Goenetxea, Jon, Aranjuelo, Nerea, Bertelsen, Alvaro, Arganda-Carreras, Ignacio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3
cites cdi_FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3
container_end_page
container_issue 12
container_start_page 532
container_title Information (Basel)
container_volume 12
creator Elordi, Unai
Lunerti, Chiara
Unzueta, Luis
Goenetxea, Jon
Aranjuelo, Nerea
Bertelsen, Alvaro
Arganda-Carreras, Ignacio
description In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.
doi_str_mv 10.3390/info12120532
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_86894ac74ee44ebf90b50b318bf32746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_86894ac74ee44ebf90b50b318bf32746</doaj_id><sourcerecordid>2612789603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3</originalsourceid><addsrcrecordid>eNptUctqHDEQHEIMNrZv_gBBrtlEr9HjaOzYXjA4xPZZaLStQcvs9EbSHPz30WZDMCF96aapqm6quu6K0S9CWPo1zREZZ5z2gn_ozjjVZsWlsR_fzafdZSlb2kprIw076-ItlDTOaR7J9VJx5ytsyC3sJ3zbwVzJc81tNSYoBCO58wHIDwjYGDXhTJ5xWg5DIWkmD1Ah4wgz4FLIGl_I98nXiHlXLrqT6KcCl3_6efd69-3l5mH1-HS_vrl-XAWhdF0ZD0EPSvRy4w03AxMmHjpITe1GS2ZV33uvQFvBes2N0T7oGKhi1lgdxHm3Pupu0G_dPqedz28OfXK_F5hH53NNYQJnlLGysSWAlDBES4eeDoKZIQqupWpan45a-4w_FyjVbXHJc3vfccW4NlZR0VCfj6iQsZQM8e9VRt0hGPc-mAbn_8BDqv5gYTM6Tf8n_QJQkJE7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612789603</pqid></control><display><type>article</type><title>Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms</title><source>Publicly Available Content (ProQuest)</source><creator>Elordi, Unai ; Lunerti, Chiara ; Unzueta, Luis ; Goenetxea, Jon ; Aranjuelo, Nerea ; Bertelsen, Alvaro ; Arganda-Carreras, Ignacio</creator><creatorcontrib>Elordi, Unai ; Lunerti, Chiara ; Unzueta, Luis ; Goenetxea, Jon ; Aranjuelo, Nerea ; Bertelsen, Alvaro ; Arganda-Carreras, Ignacio</creatorcontrib><description>In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.</description><identifier>ISSN: 2078-2489</identifier><identifier>EISSN: 2078-2489</identifier><identifier>DOI: 10.3390/info12120532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial neural networks ; Automation ; Biometrics ; Computer industry ; Data encryption ; Data integrity ; Decision making ; deep neural networks ; Dictionaries ; Face recognition ; Facial recognition technology ; Internet of Things ; knowledge-driven approach ; Platforms ; Privacy ; Smartphones ; Tablet computers ; Training ; user interaction</subject><ispartof>Information (Basel), 2021-12, Vol.12 (12), p.532</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3</citedby><cites>FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3</cites><orcidid>0000-0002-7208-3066 ; 0000-0003-0229-5722 ; 0000-0001-5648-0910 ; 0000-0002-6276-0123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612789603/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612789603?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Elordi, Unai</creatorcontrib><creatorcontrib>Lunerti, Chiara</creatorcontrib><creatorcontrib>Unzueta, Luis</creatorcontrib><creatorcontrib>Goenetxea, Jon</creatorcontrib><creatorcontrib>Aranjuelo, Nerea</creatorcontrib><creatorcontrib>Bertelsen, Alvaro</creatorcontrib><creatorcontrib>Arganda-Carreras, Ignacio</creatorcontrib><title>Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms</title><title>Information (Basel)</title><description>In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Biometrics</subject><subject>Computer industry</subject><subject>Data encryption</subject><subject>Data integrity</subject><subject>Decision making</subject><subject>deep neural networks</subject><subject>Dictionaries</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>Internet of Things</subject><subject>knowledge-driven approach</subject><subject>Platforms</subject><subject>Privacy</subject><subject>Smartphones</subject><subject>Tablet computers</subject><subject>Training</subject><subject>user interaction</subject><issn>2078-2489</issn><issn>2078-2489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUctqHDEQHEIMNrZv_gBBrtlEr9HjaOzYXjA4xPZZaLStQcvs9EbSHPz30WZDMCF96aapqm6quu6K0S9CWPo1zREZZ5z2gn_ozjjVZsWlsR_fzafdZSlb2kprIw076-ItlDTOaR7J9VJx5ytsyC3sJ3zbwVzJc81tNSYoBCO58wHIDwjYGDXhTJ5xWg5DIWkmD1Ah4wgz4FLIGl_I98nXiHlXLrqT6KcCl3_6efd69-3l5mH1-HS_vrl-XAWhdF0ZD0EPSvRy4w03AxMmHjpITe1GS2ZV33uvQFvBes2N0T7oGKhi1lgdxHm3Pupu0G_dPqedz28OfXK_F5hH53NNYQJnlLGysSWAlDBES4eeDoKZIQqupWpan45a-4w_FyjVbXHJc3vfccW4NlZR0VCfj6iQsZQM8e9VRt0hGPc-mAbn_8BDqv5gYTM6Tf8n_QJQkJE7</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Elordi, Unai</creator><creator>Lunerti, Chiara</creator><creator>Unzueta, Luis</creator><creator>Goenetxea, Jon</creator><creator>Aranjuelo, Nerea</creator><creator>Bertelsen, Alvaro</creator><creator>Arganda-Carreras, Ignacio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7208-3066</orcidid><orcidid>https://orcid.org/0000-0003-0229-5722</orcidid><orcidid>https://orcid.org/0000-0001-5648-0910</orcidid><orcidid>https://orcid.org/0000-0002-6276-0123</orcidid></search><sort><creationdate>20211201</creationdate><title>Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms</title><author>Elordi, Unai ; Lunerti, Chiara ; Unzueta, Luis ; Goenetxea, Jon ; Aranjuelo, Nerea ; Bertelsen, Alvaro ; Arganda-Carreras, Ignacio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Biometrics</topic><topic>Computer industry</topic><topic>Data encryption</topic><topic>Data integrity</topic><topic>Decision making</topic><topic>deep neural networks</topic><topic>Dictionaries</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>Internet of Things</topic><topic>knowledge-driven approach</topic><topic>Platforms</topic><topic>Privacy</topic><topic>Smartphones</topic><topic>Tablet computers</topic><topic>Training</topic><topic>user interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elordi, Unai</creatorcontrib><creatorcontrib>Lunerti, Chiara</creatorcontrib><creatorcontrib>Unzueta, Luis</creatorcontrib><creatorcontrib>Goenetxea, Jon</creatorcontrib><creatorcontrib>Aranjuelo, Nerea</creatorcontrib><creatorcontrib>Bertelsen, Alvaro</creatorcontrib><creatorcontrib>Arganda-Carreras, Ignacio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Information (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elordi, Unai</au><au>Lunerti, Chiara</au><au>Unzueta, Luis</au><au>Goenetxea, Jon</au><au>Aranjuelo, Nerea</au><au>Bertelsen, Alvaro</au><au>Arganda-Carreras, Ignacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms</atitle><jtitle>Information (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>12</volume><issue>12</issue><spage>532</spage><pages>532-</pages><issn>2078-2489</issn><eissn>2078-2489</eissn><abstract>In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/info12120532</doi><orcidid>https://orcid.org/0000-0002-7208-3066</orcidid><orcidid>https://orcid.org/0000-0003-0229-5722</orcidid><orcidid>https://orcid.org/0000-0001-5648-0910</orcidid><orcidid>https://orcid.org/0000-0002-6276-0123</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2078-2489
ispartof Information (Basel), 2021-12, Vol.12 (12), p.532
issn 2078-2489
2078-2489
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_86894ac74ee44ebf90b50b318bf32746
source Publicly Available Content (ProQuest)
subjects Artificial neural networks
Automation
Biometrics
Computer industry
Data encryption
Data integrity
Decision making
deep neural networks
Dictionaries
Face recognition
Facial recognition technology
Internet of Things
knowledge-driven approach
Platforms
Privacy
Smartphones
Tablet computers
Training
user interaction
title Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Automated%20Deployment%20Strategies%20of%20Face%20Recognition%20Solutions%20in%20Heterogeneous%20IoT%20Platforms&rft.jtitle=Information%20(Basel)&rft.au=Elordi,%20Unai&rft.date=2021-12-01&rft.volume=12&rft.issue=12&rft.spage=532&rft.pages=532-&rft.issn=2078-2489&rft.eissn=2078-2489&rft_id=info:doi/10.3390/info12120532&rft_dat=%3Cproquest_doaj_%3E2612789603%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612789603&rft_id=info:pmid/&rfr_iscdi=true