Loading…
Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms
In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secu...
Saved in:
Published in: | Information (Basel) 2021-12, Vol.12 (12), p.532 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3 |
container_end_page | |
container_issue | 12 |
container_start_page | 532 |
container_title | Information (Basel) |
container_volume | 12 |
creator | Elordi, Unai Lunerti, Chiara Unzueta, Luis Goenetxea, Jon Aranjuelo, Nerea Bertelsen, Alvaro Arganda-Carreras, Ignacio |
description | In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices. |
doi_str_mv | 10.3390/info12120532 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_86894ac74ee44ebf90b50b318bf32746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_86894ac74ee44ebf90b50b318bf32746</doaj_id><sourcerecordid>2612789603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3</originalsourceid><addsrcrecordid>eNptUctqHDEQHEIMNrZv_gBBrtlEr9HjaOzYXjA4xPZZaLStQcvs9EbSHPz30WZDMCF96aapqm6quu6K0S9CWPo1zREZZ5z2gn_ozjjVZsWlsR_fzafdZSlb2kprIw076-ItlDTOaR7J9VJx5ytsyC3sJ3zbwVzJc81tNSYoBCO58wHIDwjYGDXhTJ5xWg5DIWkmD1Ah4wgz4FLIGl_I98nXiHlXLrqT6KcCl3_6efd69-3l5mH1-HS_vrl-XAWhdF0ZD0EPSvRy4w03AxMmHjpITe1GS2ZV33uvQFvBes2N0T7oGKhi1lgdxHm3Pupu0G_dPqedz28OfXK_F5hH53NNYQJnlLGysSWAlDBES4eeDoKZIQqupWpan45a-4w_FyjVbXHJc3vfccW4NlZR0VCfj6iQsZQM8e9VRt0hGPc-mAbn_8BDqv5gYTM6Tf8n_QJQkJE7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612789603</pqid></control><display><type>article</type><title>Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms</title><source>Publicly Available Content (ProQuest)</source><creator>Elordi, Unai ; Lunerti, Chiara ; Unzueta, Luis ; Goenetxea, Jon ; Aranjuelo, Nerea ; Bertelsen, Alvaro ; Arganda-Carreras, Ignacio</creator><creatorcontrib>Elordi, Unai ; Lunerti, Chiara ; Unzueta, Luis ; Goenetxea, Jon ; Aranjuelo, Nerea ; Bertelsen, Alvaro ; Arganda-Carreras, Ignacio</creatorcontrib><description>In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.</description><identifier>ISSN: 2078-2489</identifier><identifier>EISSN: 2078-2489</identifier><identifier>DOI: 10.3390/info12120532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial neural networks ; Automation ; Biometrics ; Computer industry ; Data encryption ; Data integrity ; Decision making ; deep neural networks ; Dictionaries ; Face recognition ; Facial recognition technology ; Internet of Things ; knowledge-driven approach ; Platforms ; Privacy ; Smartphones ; Tablet computers ; Training ; user interaction</subject><ispartof>Information (Basel), 2021-12, Vol.12 (12), p.532</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3</citedby><cites>FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3</cites><orcidid>0000-0002-7208-3066 ; 0000-0003-0229-5722 ; 0000-0001-5648-0910 ; 0000-0002-6276-0123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612789603/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612789603?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Elordi, Unai</creatorcontrib><creatorcontrib>Lunerti, Chiara</creatorcontrib><creatorcontrib>Unzueta, Luis</creatorcontrib><creatorcontrib>Goenetxea, Jon</creatorcontrib><creatorcontrib>Aranjuelo, Nerea</creatorcontrib><creatorcontrib>Bertelsen, Alvaro</creatorcontrib><creatorcontrib>Arganda-Carreras, Ignacio</creatorcontrib><title>Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms</title><title>Information (Basel)</title><description>In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Biometrics</subject><subject>Computer industry</subject><subject>Data encryption</subject><subject>Data integrity</subject><subject>Decision making</subject><subject>deep neural networks</subject><subject>Dictionaries</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>Internet of Things</subject><subject>knowledge-driven approach</subject><subject>Platforms</subject><subject>Privacy</subject><subject>Smartphones</subject><subject>Tablet computers</subject><subject>Training</subject><subject>user interaction</subject><issn>2078-2489</issn><issn>2078-2489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUctqHDEQHEIMNrZv_gBBrtlEr9HjaOzYXjA4xPZZaLStQcvs9EbSHPz30WZDMCF96aapqm6quu6K0S9CWPo1zREZZ5z2gn_ozjjVZsWlsR_fzafdZSlb2kprIw076-ItlDTOaR7J9VJx5ytsyC3sJ3zbwVzJc81tNSYoBCO58wHIDwjYGDXhTJ5xWg5DIWkmD1Ah4wgz4FLIGl_I98nXiHlXLrqT6KcCl3_6efd69-3l5mH1-HS_vrl-XAWhdF0ZD0EPSvRy4w03AxMmHjpITe1GS2ZV33uvQFvBes2N0T7oGKhi1lgdxHm3Pupu0G_dPqedz28OfXK_F5hH53NNYQJnlLGysSWAlDBES4eeDoKZIQqupWpan45a-4w_FyjVbXHJc3vfccW4NlZR0VCfj6iQsZQM8e9VRt0hGPc-mAbn_8BDqv5gYTM6Tf8n_QJQkJE7</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Elordi, Unai</creator><creator>Lunerti, Chiara</creator><creator>Unzueta, Luis</creator><creator>Goenetxea, Jon</creator><creator>Aranjuelo, Nerea</creator><creator>Bertelsen, Alvaro</creator><creator>Arganda-Carreras, Ignacio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7208-3066</orcidid><orcidid>https://orcid.org/0000-0003-0229-5722</orcidid><orcidid>https://orcid.org/0000-0001-5648-0910</orcidid><orcidid>https://orcid.org/0000-0002-6276-0123</orcidid></search><sort><creationdate>20211201</creationdate><title>Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms</title><author>Elordi, Unai ; Lunerti, Chiara ; Unzueta, Luis ; Goenetxea, Jon ; Aranjuelo, Nerea ; Bertelsen, Alvaro ; Arganda-Carreras, Ignacio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Biometrics</topic><topic>Computer industry</topic><topic>Data encryption</topic><topic>Data integrity</topic><topic>Decision making</topic><topic>deep neural networks</topic><topic>Dictionaries</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>Internet of Things</topic><topic>knowledge-driven approach</topic><topic>Platforms</topic><topic>Privacy</topic><topic>Smartphones</topic><topic>Tablet computers</topic><topic>Training</topic><topic>user interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elordi, Unai</creatorcontrib><creatorcontrib>Lunerti, Chiara</creatorcontrib><creatorcontrib>Unzueta, Luis</creatorcontrib><creatorcontrib>Goenetxea, Jon</creatorcontrib><creatorcontrib>Aranjuelo, Nerea</creatorcontrib><creatorcontrib>Bertelsen, Alvaro</creatorcontrib><creatorcontrib>Arganda-Carreras, Ignacio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Information (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elordi, Unai</au><au>Lunerti, Chiara</au><au>Unzueta, Luis</au><au>Goenetxea, Jon</au><au>Aranjuelo, Nerea</au><au>Bertelsen, Alvaro</au><au>Arganda-Carreras, Ignacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms</atitle><jtitle>Information (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>12</volume><issue>12</issue><spage>532</spage><pages>532-</pages><issn>2078-2489</issn><eissn>2078-2489</eissn><abstract>In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/info12120532</doi><orcidid>https://orcid.org/0000-0002-7208-3066</orcidid><orcidid>https://orcid.org/0000-0003-0229-5722</orcidid><orcidid>https://orcid.org/0000-0001-5648-0910</orcidid><orcidid>https://orcid.org/0000-0002-6276-0123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2078-2489 |
ispartof | Information (Basel), 2021-12, Vol.12 (12), p.532 |
issn | 2078-2489 2078-2489 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_86894ac74ee44ebf90b50b318bf32746 |
source | Publicly Available Content (ProQuest) |
subjects | Artificial neural networks Automation Biometrics Computer industry Data encryption Data integrity Decision making deep neural networks Dictionaries Face recognition Facial recognition technology Internet of Things knowledge-driven approach Platforms Privacy Smartphones Tablet computers Training user interaction |
title | Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Automated%20Deployment%20Strategies%20of%20Face%20Recognition%20Solutions%20in%20Heterogeneous%20IoT%20Platforms&rft.jtitle=Information%20(Basel)&rft.au=Elordi,%20Unai&rft.date=2021-12-01&rft.volume=12&rft.issue=12&rft.spage=532&rft.pages=532-&rft.issn=2078-2489&rft.eissn=2078-2489&rft_id=info:doi/10.3390/info12120532&rft_dat=%3Cproquest_doaj_%3E2612789603%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-8aec7b6354da828b138f828be4709d7419655aa6e7931572887ac7fc0619897c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612789603&rft_id=info:pmid/&rfr_iscdi=true |