Loading…
Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method
The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C...
Saved in:
Published in: | Micromachines (Basel) 2024-03, Vol.15 (3), p.414 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3 |
container_end_page | |
container_issue | 3 |
container_start_page | 414 |
container_title | Micromachines (Basel) |
container_volume | 15 |
creator | Yewale, Manesh A. Kumar, Vineet Teli, Aviraj M. Beknalkar, Sonali A. Nakate, Umesh T. Shin, Dong-Kil |
description | The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge–discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high. |
doi_str_mv | 10.3390/mi15030414 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8693b0e3bb0246da9281e601b21a900a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8693b0e3bb0246da9281e601b21a900a</doaj_id><sourcerecordid>3014007867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3</originalsourceid><addsrcrecordid>eNpdkt9rFDEQgBdRsLR98S8I-CLC2vza7O6TyNHaQm0FFXwLs8nkLsfuZk2yB_3vjV5Rax4mw-TjY5hMVb1i9J0QPb2YPGuooJLJZ9UJpy2vlVLfn_-Tv6zOU9rTctq2L-Gk2l-OeIDs5y35si4YDSxgfA6RfMboQpxgNkiCI5sg7mW9rTfiTpI7mIMJ0xKSz5jIFQzRG8hoycEDyTsk1w82hpIUwUg-Yd4Fe1a9cDAmPH-8T6tvV5dfN9f17f3Hm82H29pI2uda8KaxthFSOhisa1Cxng4Dlc4YcC3vlHLSOMcUCNu0XHHAlg6CA6Wis1acVjdHrw2w10v0E8QHHcDr34UQtxpi9mZE3aleDBRF0XOpLPS8Y6goGziDMh8orvdH17IOE1qDc44wPpE-fZn9Tm_DQTPat6yTvBjePBpi-LFiynryyeA4woxhTVpQJstPdKot6Ov_0H1Y41xmVSgqRNP1VBbq7ZEyMaQU0f3phlH9aw_03z0QPwFzWaVG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003358904</pqid></control><display><type>article</type><title>Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method</title><source>Publicly Available Content Database</source><source>PubMed</source><creator>Yewale, Manesh A. ; Kumar, Vineet ; Teli, Aviraj M. ; Beknalkar, Sonali A. ; Nakate, Umesh T. ; Shin, Dong-Kil</creator><creatorcontrib>Yewale, Manesh A. ; Kumar, Vineet ; Teli, Aviraj M. ; Beknalkar, Sonali A. ; Nakate, Umesh T. ; Shin, Dong-Kil</creatorcontrib><description>The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge–discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi15030414</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activated carbon ; Alternative energy sources ; Aqueous electrolytes ; Asymmetry ; Carbon nitride ; Co3O4 nanoparticles ; Cobalt ; Cobalt oxides ; Composite materials ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electrons ; Energy resources ; Energy storage ; graphic carbon nitride (g-C3N4) ; Metal oxides ; Nanocomposites ; Nanoparticles ; Nitrogen ; Polyvinyl alcohol ; Potassium hydroxides ; Renewable resources ; Spectrum analysis ; Storage capacity ; supercapacitor ; Supercapacitors</subject><ispartof>Micromachines (Basel), 2024-03, Vol.15 (3), p.414</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3</cites><orcidid>0000-0002-9422-8131 ; 0000-0003-0095-1976 ; 0000-0001-8268-0385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003358904/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003358904?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yewale, Manesh A.</creatorcontrib><creatorcontrib>Kumar, Vineet</creatorcontrib><creatorcontrib>Teli, Aviraj M.</creatorcontrib><creatorcontrib>Beknalkar, Sonali A.</creatorcontrib><creatorcontrib>Nakate, Umesh T.</creatorcontrib><creatorcontrib>Shin, Dong-Kil</creatorcontrib><title>Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method</title><title>Micromachines (Basel)</title><description>The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge–discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high.</description><subject>Activated carbon</subject><subject>Alternative energy sources</subject><subject>Aqueous electrolytes</subject><subject>Asymmetry</subject><subject>Carbon nitride</subject><subject>Co3O4 nanoparticles</subject><subject>Cobalt</subject><subject>Cobalt oxides</subject><subject>Composite materials</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>graphic carbon nitride (g-C3N4)</subject><subject>Metal oxides</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>Polyvinyl alcohol</subject><subject>Potassium hydroxides</subject><subject>Renewable resources</subject><subject>Spectrum analysis</subject><subject>Storage capacity</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQgBdRsLR98S8I-CLC2vza7O6TyNHaQm0FFXwLs8nkLsfuZk2yB_3vjV5Rax4mw-TjY5hMVb1i9J0QPb2YPGuooJLJZ9UJpy2vlVLfn_-Tv6zOU9rTctq2L-Gk2l-OeIDs5y35si4YDSxgfA6RfMboQpxgNkiCI5sg7mW9rTfiTpI7mIMJ0xKSz5jIFQzRG8hoycEDyTsk1w82hpIUwUg-Yd4Fe1a9cDAmPH-8T6tvV5dfN9f17f3Hm82H29pI2uda8KaxthFSOhisa1Cxng4Dlc4YcC3vlHLSOMcUCNu0XHHAlg6CA6Wis1acVjdHrw2w10v0E8QHHcDr34UQtxpi9mZE3aleDBRF0XOpLPS8Y6goGziDMh8orvdH17IOE1qDc44wPpE-fZn9Tm_DQTPat6yTvBjePBpi-LFiynryyeA4woxhTVpQJstPdKot6Ov_0H1Y41xmVSgqRNP1VBbq7ZEyMaQU0f3phlH9aw_03z0QPwFzWaVG</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>Yewale, Manesh A.</creator><creator>Kumar, Vineet</creator><creator>Teli, Aviraj M.</creator><creator>Beknalkar, Sonali A.</creator><creator>Nakate, Umesh T.</creator><creator>Shin, Dong-Kil</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9422-8131</orcidid><orcidid>https://orcid.org/0000-0003-0095-1976</orcidid><orcidid>https://orcid.org/0000-0001-8268-0385</orcidid></search><sort><creationdate>20240320</creationdate><title>Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method</title><author>Yewale, Manesh A. ; Kumar, Vineet ; Teli, Aviraj M. ; Beknalkar, Sonali A. ; Nakate, Umesh T. ; Shin, Dong-Kil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Alternative energy sources</topic><topic>Aqueous electrolytes</topic><topic>Asymmetry</topic><topic>Carbon nitride</topic><topic>Co3O4 nanoparticles</topic><topic>Cobalt</topic><topic>Cobalt oxides</topic><topic>Composite materials</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>graphic carbon nitride (g-C3N4)</topic><topic>Metal oxides</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>Polyvinyl alcohol</topic><topic>Potassium hydroxides</topic><topic>Renewable resources</topic><topic>Spectrum analysis</topic><topic>Storage capacity</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yewale, Manesh A.</creatorcontrib><creatorcontrib>Kumar, Vineet</creatorcontrib><creatorcontrib>Teli, Aviraj M.</creatorcontrib><creatorcontrib>Beknalkar, Sonali A.</creatorcontrib><creatorcontrib>Nakate, Umesh T.</creatorcontrib><creatorcontrib>Shin, Dong-Kil</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yewale, Manesh A.</au><au>Kumar, Vineet</au><au>Teli, Aviraj M.</au><au>Beknalkar, Sonali A.</au><au>Nakate, Umesh T.</au><au>Shin, Dong-Kil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method</atitle><jtitle>Micromachines (Basel)</jtitle><date>2024-03-20</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>414</spage><pages>414-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge–discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/mi15030414</doi><orcidid>https://orcid.org/0000-0002-9422-8131</orcidid><orcidid>https://orcid.org/0000-0003-0095-1976</orcidid><orcidid>https://orcid.org/0000-0001-8268-0385</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2024-03, Vol.15 (3), p.414 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8693b0e3bb0246da9281e601b21a900a |
source | Publicly Available Content Database; PubMed |
subjects | Activated carbon Alternative energy sources Aqueous electrolytes Asymmetry Carbon nitride Co3O4 nanoparticles Cobalt Cobalt oxides Composite materials Electrochemical analysis Electrodes Electrolytes Electrons Energy resources Energy storage graphic carbon nitride (g-C3N4) Metal oxides Nanocomposites Nanoparticles Nitrogen Polyvinyl alcohol Potassium hydroxides Renewable resources Spectrum analysis Storage capacity supercapacitor Supercapacitors |
title | Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elevating%20Supercapacitor%20Performance%20of%20Co3O4-g-C3N4%20Nanocomposites%20Fabricated%20via%20the%20Hydrothermal%20Method&rft.jtitle=Micromachines%20(Basel)&rft.au=Yewale,%20Manesh%20A.&rft.date=2024-03-20&rft.volume=15&rft.issue=3&rft.spage=414&rft.pages=414-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi15030414&rft_dat=%3Cproquest_doaj_%3E3014007867%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003358904&rft_id=info:pmid/&rfr_iscdi=true |