Loading…

Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method

The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2024-03, Vol.15 (3), p.414
Main Authors: Yewale, Manesh A., Kumar, Vineet, Teli, Aviraj M., Beknalkar, Sonali A., Nakate, Umesh T., Shin, Dong-Kil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3
container_end_page
container_issue 3
container_start_page 414
container_title Micromachines (Basel)
container_volume 15
creator Yewale, Manesh A.
Kumar, Vineet
Teli, Aviraj M.
Beknalkar, Sonali A.
Nakate, Umesh T.
Shin, Dong-Kil
description The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge–discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high.
doi_str_mv 10.3390/mi15030414
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8693b0e3bb0246da9281e601b21a900a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8693b0e3bb0246da9281e601b21a900a</doaj_id><sourcerecordid>3014007867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3</originalsourceid><addsrcrecordid>eNpdkt9rFDEQgBdRsLR98S8I-CLC2vza7O6TyNHaQm0FFXwLs8nkLsfuZk2yB_3vjV5Rax4mw-TjY5hMVb1i9J0QPb2YPGuooJLJZ9UJpy2vlVLfn_-Tv6zOU9rTctq2L-Gk2l-OeIDs5y35si4YDSxgfA6RfMboQpxgNkiCI5sg7mW9rTfiTpI7mIMJ0xKSz5jIFQzRG8hoycEDyTsk1w82hpIUwUg-Yd4Fe1a9cDAmPH-8T6tvV5dfN9f17f3Hm82H29pI2uda8KaxthFSOhisa1Cxng4Dlc4YcC3vlHLSOMcUCNu0XHHAlg6CA6Wis1acVjdHrw2w10v0E8QHHcDr34UQtxpi9mZE3aleDBRF0XOpLPS8Y6goGziDMh8orvdH17IOE1qDc44wPpE-fZn9Tm_DQTPat6yTvBjePBpi-LFiynryyeA4woxhTVpQJstPdKot6Ov_0H1Y41xmVSgqRNP1VBbq7ZEyMaQU0f3phlH9aw_03z0QPwFzWaVG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003358904</pqid></control><display><type>article</type><title>Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method</title><source>Publicly Available Content Database</source><source>PubMed</source><creator>Yewale, Manesh A. ; Kumar, Vineet ; Teli, Aviraj M. ; Beknalkar, Sonali A. ; Nakate, Umesh T. ; Shin, Dong-Kil</creator><creatorcontrib>Yewale, Manesh A. ; Kumar, Vineet ; Teli, Aviraj M. ; Beknalkar, Sonali A. ; Nakate, Umesh T. ; Shin, Dong-Kil</creatorcontrib><description>The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge–discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi15030414</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activated carbon ; Alternative energy sources ; Aqueous electrolytes ; Asymmetry ; Carbon nitride ; Co3O4 nanoparticles ; Cobalt ; Cobalt oxides ; Composite materials ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electrons ; Energy resources ; Energy storage ; graphic carbon nitride (g-C3N4) ; Metal oxides ; Nanocomposites ; Nanoparticles ; Nitrogen ; Polyvinyl alcohol ; Potassium hydroxides ; Renewable resources ; Spectrum analysis ; Storage capacity ; supercapacitor ; Supercapacitors</subject><ispartof>Micromachines (Basel), 2024-03, Vol.15 (3), p.414</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3</cites><orcidid>0000-0002-9422-8131 ; 0000-0003-0095-1976 ; 0000-0001-8268-0385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003358904/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003358904?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yewale, Manesh A.</creatorcontrib><creatorcontrib>Kumar, Vineet</creatorcontrib><creatorcontrib>Teli, Aviraj M.</creatorcontrib><creatorcontrib>Beknalkar, Sonali A.</creatorcontrib><creatorcontrib>Nakate, Umesh T.</creatorcontrib><creatorcontrib>Shin, Dong-Kil</creatorcontrib><title>Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method</title><title>Micromachines (Basel)</title><description>The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge–discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high.</description><subject>Activated carbon</subject><subject>Alternative energy sources</subject><subject>Aqueous electrolytes</subject><subject>Asymmetry</subject><subject>Carbon nitride</subject><subject>Co3O4 nanoparticles</subject><subject>Cobalt</subject><subject>Cobalt oxides</subject><subject>Composite materials</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>graphic carbon nitride (g-C3N4)</subject><subject>Metal oxides</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>Polyvinyl alcohol</subject><subject>Potassium hydroxides</subject><subject>Renewable resources</subject><subject>Spectrum analysis</subject><subject>Storage capacity</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQgBdRsLR98S8I-CLC2vza7O6TyNHaQm0FFXwLs8nkLsfuZk2yB_3vjV5Rax4mw-TjY5hMVb1i9J0QPb2YPGuooJLJZ9UJpy2vlVLfn_-Tv6zOU9rTctq2L-Gk2l-OeIDs5y35si4YDSxgfA6RfMboQpxgNkiCI5sg7mW9rTfiTpI7mIMJ0xKSz5jIFQzRG8hoycEDyTsk1w82hpIUwUg-Yd4Fe1a9cDAmPH-8T6tvV5dfN9f17f3Hm82H29pI2uda8KaxthFSOhisa1Cxng4Dlc4YcC3vlHLSOMcUCNu0XHHAlg6CA6Wis1acVjdHrw2w10v0E8QHHcDr34UQtxpi9mZE3aleDBRF0XOpLPS8Y6goGziDMh8orvdH17IOE1qDc44wPpE-fZn9Tm_DQTPat6yTvBjePBpi-LFiynryyeA4woxhTVpQJstPdKot6Ov_0H1Y41xmVSgqRNP1VBbq7ZEyMaQU0f3phlH9aw_03z0QPwFzWaVG</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>Yewale, Manesh A.</creator><creator>Kumar, Vineet</creator><creator>Teli, Aviraj M.</creator><creator>Beknalkar, Sonali A.</creator><creator>Nakate, Umesh T.</creator><creator>Shin, Dong-Kil</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9422-8131</orcidid><orcidid>https://orcid.org/0000-0003-0095-1976</orcidid><orcidid>https://orcid.org/0000-0001-8268-0385</orcidid></search><sort><creationdate>20240320</creationdate><title>Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method</title><author>Yewale, Manesh A. ; Kumar, Vineet ; Teli, Aviraj M. ; Beknalkar, Sonali A. ; Nakate, Umesh T. ; Shin, Dong-Kil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Alternative energy sources</topic><topic>Aqueous electrolytes</topic><topic>Asymmetry</topic><topic>Carbon nitride</topic><topic>Co3O4 nanoparticles</topic><topic>Cobalt</topic><topic>Cobalt oxides</topic><topic>Composite materials</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>graphic carbon nitride (g-C3N4)</topic><topic>Metal oxides</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>Polyvinyl alcohol</topic><topic>Potassium hydroxides</topic><topic>Renewable resources</topic><topic>Spectrum analysis</topic><topic>Storage capacity</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yewale, Manesh A.</creatorcontrib><creatorcontrib>Kumar, Vineet</creatorcontrib><creatorcontrib>Teli, Aviraj M.</creatorcontrib><creatorcontrib>Beknalkar, Sonali A.</creatorcontrib><creatorcontrib>Nakate, Umesh T.</creatorcontrib><creatorcontrib>Shin, Dong-Kil</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yewale, Manesh A.</au><au>Kumar, Vineet</au><au>Teli, Aviraj M.</au><au>Beknalkar, Sonali A.</au><au>Nakate, Umesh T.</au><au>Shin, Dong-Kil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method</atitle><jtitle>Micromachines (Basel)</jtitle><date>2024-03-20</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>414</spage><pages>414-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge–discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/mi15030414</doi><orcidid>https://orcid.org/0000-0002-9422-8131</orcidid><orcidid>https://orcid.org/0000-0003-0095-1976</orcidid><orcidid>https://orcid.org/0000-0001-8268-0385</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2024-03, Vol.15 (3), p.414
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8693b0e3bb0246da9281e601b21a900a
source Publicly Available Content Database; PubMed
subjects Activated carbon
Alternative energy sources
Aqueous electrolytes
Asymmetry
Carbon nitride
Co3O4 nanoparticles
Cobalt
Cobalt oxides
Composite materials
Electrochemical analysis
Electrodes
Electrolytes
Electrons
Energy resources
Energy storage
graphic carbon nitride (g-C3N4)
Metal oxides
Nanocomposites
Nanoparticles
Nitrogen
Polyvinyl alcohol
Potassium hydroxides
Renewable resources
Spectrum analysis
Storage capacity
supercapacitor
Supercapacitors
title Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elevating%20Supercapacitor%20Performance%20of%20Co3O4-g-C3N4%20Nanocomposites%20Fabricated%20via%20the%20Hydrothermal%20Method&rft.jtitle=Micromachines%20(Basel)&rft.au=Yewale,%20Manesh%20A.&rft.date=2024-03-20&rft.volume=15&rft.issue=3&rft.spage=414&rft.pages=414-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi15030414&rft_dat=%3Cproquest_doaj_%3E3014007867%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-3255dd5344fabdf5e6190bb04fccaf72866f4cff16a3d57262ae70b32a0038dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003358904&rft_id=info:pmid/&rfr_iscdi=true