Loading…
Supercooling of the A phase of 3He
Because of the extreme purity, lack of disorder, and complex order parameter, the first-order superfluid 3 He A–B transition is the leading model system for first order transitions in the early universe. Here we report on the path dependence of the supercooling of the A phase over a wide range of pr...
Saved in:
Published in: | Nature communications 2023-01, Vol.14 (1), p.148-148, Article 148 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Because of the extreme purity, lack of disorder, and complex order parameter, the first-order superfluid
3
He A–B transition is the leading model system for first order transitions in the early universe. Here we report on the path dependence of the supercooling of the A phase over a wide range of pressures below 29.3 bar at nearly zero magnetic field. The A phase can be cooled significantly below the thermodynamic A–B transition temperature. While the extent of supercooling is highly reproducible, it depends strongly upon the cooling trajectory: The metastability of the A phase is enhanced by transiting through regions where the A phase is more stable. We provide evidence that some of the additional supercooling is due to the elimination of B phase nucleation precursors formed upon passage through the superfluid transition. A greater understanding of the physics is essential before
3
He can be exploited to model transitions in the early universe.
The A–B transition in superfluid
3
He is a pure experimental model system to study first-order phase transitions in the early Universe. Tian et al. observe the path dependence of the supercooling of the A phase in a wide parameter range and provide explanations for the heterogeneous nucleation of the B phase. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-35532-7 |