Loading…

Mechanistic insight into the anti-alternaria activity of bimetallic zinc oxide and silver/zinc oxide nanoparticles

Alternaria alternata is an opportunistic phytopathogen that negatively impact the growth and production of a wide variety of host plants. In this study, we evaluated the antifungal potential of biogenic ZnO, and bimetallic silver and zinc oxide (Ag/ZnO) nanoparticles synthesized using seed extract o...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-05, Vol.10 (10), p.e31330-e31330, Article e31330
Main Authors: Daniel, Augustine Innalegwu, Smith, Enriquay, Al-Hashimi, Ali, Gokul, Arun, Keyster, Marshall, Klein, Ashwil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alternaria alternata is an opportunistic phytopathogen that negatively impact the growth and production of a wide variety of host plants. In this study, we evaluated the antifungal potential of biogenic ZnO, and bimetallic silver and zinc oxide (Ag/ZnO) nanoparticles synthesized using seed extract of Abrus precatorious and characterized using different analytical tools. In vitro antifungal potentials of ZnO and Ag/ZnO nanoparticles were carried out using the food poison technique. Morphological and ultrastructure of the A. alternata treated with the nanoparticles were carried out using high resolution scanning and transmission electron microscopy (HRSEM and HRTEM). In addition, changes in polysaccharide production, chitin content and enzymatic (cellulase and lipase) activities of A. alternata were assayed. Double peak signifying a UVmax of 353.88 and 417.25 nm representing Ag and ZnO respectively was formed in the bimetallic nanoparticles. HRSEM and HRTEM results shows agglomerated nanoparticles with particle and crystallite size of 23.94 and 16.84 nm for ZnO nanoparticles, 35.12 and 28.99 nm for Ag/ZnO nanoparticles respectively. In vitro antifungal assay shows a significant concentration-dependent inhibition (p 
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e31330