Loading…

Ground Fault Detection Using Hybrid Method in IT System LVDC Microgrid

Low voltage direct current (LVDC) microgrid systems have many advantages over low voltage alternating current (LVAC) systems. Furthermore, LVDC microgrids are growing in use because they are easy to link to distributed energy resources (DER) and energy storage systems (ESS), etc. Currently, IT syste...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-05, Vol.13 (10), p.2606
Main Authors: Lee, Kyung-Min, Park, Chul-Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low voltage direct current (LVDC) microgrid systems have many advantages over low voltage alternating current (LVAC) systems. Furthermore, LVDC microgrids are growing in use because they are easy to link to distributed energy resources (DER) and energy storage systems (ESS), etc. Currently, IT system LVDC microgrids are widely used in direct current (DC) railways, hospitals, photovoltaic (PV) systems, and so on. When a ground fault occurs in an IT system LVDC microgrid, the ground fault may not be detected because the fault current is very small and there is no current path. In this paper, ground fault detection is proposed using a hybrid method that comprises pulsation signal generator injection and detailed coefficients of discrete wavelet transform (DWT). The LVDC microgrid was modeled and simulated using power systems computer-aided design (PSCAD). In addition, the proposed hybrid method was implemented using MATLAB’s wave menu, a script m-file, and the PSCAD library. The proper threshold was selected and tested by fault resistance change and load variation. In order to verify the superiority of the proposed hybrid method, a comparative study with the conventional method was performed. The results of various simulations show that the proposed hybrid detection method has normal operation and accurately and rapidly detects ground faults.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13102606