Loading…

Whole genome sequence and de novo assembly revealed genomic architecture of Indian Mithun (Bos frontalis)

Mithun (Bos frontalis), also called gayal, is an endangered bovine species, under the tribe bovini with 2n = 58 XX chromosome complements and reared under the tropical rain forests region of India, China, Myanmar, Bhutan and Bangladesh. However, the origin of this species is still disputed and infor...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2019-07, Vol.20 (1), p.617-617, Article 617
Main Authors: Mukherjee, Sabyasachi, Cai, Zexi, Mukherjee, Anupama, Longkumer, Imsusosang, Mech, Moonmoon, Vupru, Kezhavituo, Khate, Kobu, Rajkhowa, Chandan, Mitra, Abhijit, Guldbrandtsen, Bernt, Lund, Mogens Sandø, Sahana, Goutam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mithun (Bos frontalis), also called gayal, is an endangered bovine species, under the tribe bovini with 2n = 58 XX chromosome complements and reared under the tropical rain forests region of India, China, Myanmar, Bhutan and Bangladesh. However, the origin of this species is still disputed and information on its genomic architecture is scanty so far. We trust that availability of its whole genome sequence data and assembly will greatly solve this problem and help to generate many information including phylogenetic status of mithun. Recently, the first genome assembly of gayal, mithun of Chinese origin, was published. However, an improved reference genome assembly would still benefit in understanding genetic variation in mithun populations reared under diverse geographical locations and for building a superior consensus assembly. We, therefore, performed deep sequencing of the genome of an adult female mithun from India, assembled and annotated its genome and performed extensive bioinformatic analyses to produce a superior de novo genome assembly of mithun. We generated ≈300 Gigabyte (Gb) raw reads from whole-genome deep sequencing platforms and assembled the sequence data using a hybrid assembly strategy to create a high quality de novo assembly of mithun with 96% recovered as per BUSCO analysis. The final genome assembly has a total length of 3.0 Gb, contains 5,015 scaffolds with an N50 value of 1 Mb. Repeat sequences constitute around 43.66% of the assembly. The genomic alignments between mithun to cattle showed that their genomes, as expected, are highly conserved. Gene annotation identified 28,044 protein-coding genes presented in mithun genome. The gene orthologous groups of mithun showed a high degree of similarity in comparison with other species, while fewer mithun specific coding sequences were found compared to those in cattle. Here we presented the first de novo draft genome assembly of Indian mithun having better coverage, less fragmented, better annotated, and constitutes a reasonably complete assembly compared to the previously published gayal genome. This comprehensive assembly unravelled the genomic architecture of mithun to a great extent and will provide a reference genome assembly to research community to elucidate the evolutionary history of mithun across its distinct geographical locations.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-019-5980-y