Loading…
Spatiotemporal Dynamics of a Diffusive Immunosuppressive Infection Model with Nonlocal Competition and Crowley–Martin Functional Response
In this paper, we introduce the Crowley–Martin functional response and nonlocal competition into a reaction–diffusion immunosuppressive infection model. First, we analyze the existence and stability of the positive constant steady states of the systems with nonlocal competition and local competition...
Saved in:
Published in: | Axioms 2023-11, Vol.12 (12), p.1085 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-ddd353409b0129921bbd4372712edd49dcb12e7080cbff0aee9834e7be39f9693 |
container_end_page | |
container_issue | 12 |
container_start_page | 1085 |
container_title | Axioms |
container_volume | 12 |
creator | Xue, Yuan Xu, Jinli Ding, Yuting |
description | In this paper, we introduce the Crowley–Martin functional response and nonlocal competition into a reaction–diffusion immunosuppressive infection model. First, we analyze the existence and stability of the positive constant steady states of the systems with nonlocal competition and local competition, respectively. Second, we deduce the conditions for the occurrence of Turing, Hopf, and Turing–Hopf bifurcations of the system with nonlocal competition, as well as the conditions for the occurrence of Hopf bifurcations of the system with local competition. Furthermore, we employ the multiple time scales method to derive the normal forms of the Hopf bifurcations reduced on the center manifold for both systems. Finally, we conduct numerical simulations for both systems under the same parameter settings, compare the impact of nonlocal competition, and find that the nonlocal term can induce spatially inhomogeneous stable periodic solutions. We also provide corresponding biological explanations for the simulation results. |
doi_str_mv | 10.3390/axioms12121085 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_86d256296c814984bf01d7401d85c078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A777496343</galeid><doaj_id>oai_doaj_org_article_86d256296c814984bf01d7401d85c078</doaj_id><sourcerecordid>A777496343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ddd353409b0129921bbd4372712edd49dcb12e7080cbff0aee9834e7be39f9693</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRBIVKVXzpY4b_FXYvtYbSms1FKpwNly7HHxKrGDndDujTtH_iG_BHcX8SHVI9mjN-89eTTTNC8JPmVM4dfmPqSxEFoDy_ZJc0SxaFekk_jpP_nz5qSULa5HESYJO2q-f5jMHNIM45SyGdD5Lpox2IKSRwadB--XEr4C2ozjElNZpilDOSDRg63SiK6SgwHdhfkzep_ikGz1Wadxgjns6yY6tM7pboDdz28_rkyeQ0QXS9yrK_cGypRigRfNM2-GAie_3-Pm08Wbj-t3q8vrt5v12eXKMtrOK-ccaxnHqseEKkVJ3zvOBBWEgnNcOdvXTGCJbe89NgBKMg6iB6a86hQ7bjYHX5fMVk85jCbvdDJB74GUb_XDH-0AWnaOth1VnZWEK8l7j4kTvF6ytVjI6vXq4DXl9GWBMuttWnLtqmiqMO-obCn_y7o11TREn-Zs7BiK1WdCCK46xlllnT7CquGgjiRF8KHijwlsTqVk8H-aIVg_rIX-fy3YL-rFrTU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904628524</pqid></control><display><type>article</type><title>Spatiotemporal Dynamics of a Diffusive Immunosuppressive Infection Model with Nonlocal Competition and Crowley–Martin Functional Response</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Xue, Yuan ; Xu, Jinli ; Ding, Yuting</creator><creatorcontrib>Xue, Yuan ; Xu, Jinli ; Ding, Yuting</creatorcontrib><description>In this paper, we introduce the Crowley–Martin functional response and nonlocal competition into a reaction–diffusion immunosuppressive infection model. First, we analyze the existence and stability of the positive constant steady states of the systems with nonlocal competition and local competition, respectively. Second, we deduce the conditions for the occurrence of Turing, Hopf, and Turing–Hopf bifurcations of the system with nonlocal competition, as well as the conditions for the occurrence of Hopf bifurcations of the system with local competition. Furthermore, we employ the multiple time scales method to derive the normal forms of the Hopf bifurcations reduced on the center manifold for both systems. Finally, we conduct numerical simulations for both systems under the same parameter settings, compare the impact of nonlocal competition, and find that the nonlocal term can induce spatially inhomogeneous stable periodic solutions. We also provide corresponding biological explanations for the simulation results.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms12121085</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Canonical forms ; Competition ; Crowley–Martin functional response ; delay ; Hepatitis ; HIV ; Hopf bifurcation ; Human immunodeficiency virus ; Immune system ; Immunosuppression ; immunosuppressive infection model ; Infection ; Infections ; Mathematical models ; nonlocal competition ; Pathogens ; Stability analysis ; Viruses</subject><ispartof>Axioms, 2023-11, Vol.12 (12), p.1085</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-ddd353409b0129921bbd4372712edd49dcb12e7080cbff0aee9834e7be39f9693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904628524/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904628524?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Xu, Jinli</creatorcontrib><creatorcontrib>Ding, Yuting</creatorcontrib><title>Spatiotemporal Dynamics of a Diffusive Immunosuppressive Infection Model with Nonlocal Competition and Crowley–Martin Functional Response</title><title>Axioms</title><description>In this paper, we introduce the Crowley–Martin functional response and nonlocal competition into a reaction–diffusion immunosuppressive infection model. First, we analyze the existence and stability of the positive constant steady states of the systems with nonlocal competition and local competition, respectively. Second, we deduce the conditions for the occurrence of Turing, Hopf, and Turing–Hopf bifurcations of the system with nonlocal competition, as well as the conditions for the occurrence of Hopf bifurcations of the system with local competition. Furthermore, we employ the multiple time scales method to derive the normal forms of the Hopf bifurcations reduced on the center manifold for both systems. Finally, we conduct numerical simulations for both systems under the same parameter settings, compare the impact of nonlocal competition, and find that the nonlocal term can induce spatially inhomogeneous stable periodic solutions. We also provide corresponding biological explanations for the simulation results.</description><subject>Canonical forms</subject><subject>Competition</subject><subject>Crowley–Martin functional response</subject><subject>delay</subject><subject>Hepatitis</subject><subject>HIV</subject><subject>Hopf bifurcation</subject><subject>Human immunodeficiency virus</subject><subject>Immune system</subject><subject>Immunosuppression</subject><subject>immunosuppressive infection model</subject><subject>Infection</subject><subject>Infections</subject><subject>Mathematical models</subject><subject>nonlocal competition</subject><subject>Pathogens</subject><subject>Stability analysis</subject><subject>Viruses</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRBIVKVXzpY4b_FXYvtYbSms1FKpwNly7HHxKrGDndDujTtH_iG_BHcX8SHVI9mjN-89eTTTNC8JPmVM4dfmPqSxEFoDy_ZJc0SxaFekk_jpP_nz5qSULa5HESYJO2q-f5jMHNIM45SyGdD5Lpox2IKSRwadB--XEr4C2ozjElNZpilDOSDRg63SiK6SgwHdhfkzep_ikGz1Wadxgjns6yY6tM7pboDdz28_rkyeQ0QXS9yrK_cGypRigRfNM2-GAie_3-Pm08Wbj-t3q8vrt5v12eXKMtrOK-ccaxnHqseEKkVJ3zvOBBWEgnNcOdvXTGCJbe89NgBKMg6iB6a86hQ7bjYHX5fMVk85jCbvdDJB74GUb_XDH-0AWnaOth1VnZWEK8l7j4kTvF6ytVjI6vXq4DXl9GWBMuttWnLtqmiqMO-obCn_y7o11TREn-Zs7BiK1WdCCK46xlllnT7CquGgjiRF8KHijwlsTqVk8H-aIVg_rIX-fy3YL-rFrTU</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Xue, Yuan</creator><creator>Xu, Jinli</creator><creator>Ding, Yuting</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20231101</creationdate><title>Spatiotemporal Dynamics of a Diffusive Immunosuppressive Infection Model with Nonlocal Competition and Crowley–Martin Functional Response</title><author>Xue, Yuan ; Xu, Jinli ; Ding, Yuting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ddd353409b0129921bbd4372712edd49dcb12e7080cbff0aee9834e7be39f9693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Canonical forms</topic><topic>Competition</topic><topic>Crowley–Martin functional response</topic><topic>delay</topic><topic>Hepatitis</topic><topic>HIV</topic><topic>Hopf bifurcation</topic><topic>Human immunodeficiency virus</topic><topic>Immune system</topic><topic>Immunosuppression</topic><topic>immunosuppressive infection model</topic><topic>Infection</topic><topic>Infections</topic><topic>Mathematical models</topic><topic>nonlocal competition</topic><topic>Pathogens</topic><topic>Stability analysis</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Xu, Jinli</creatorcontrib><creatorcontrib>Ding, Yuting</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Yuan</au><au>Xu, Jinli</au><au>Ding, Yuting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Dynamics of a Diffusive Immunosuppressive Infection Model with Nonlocal Competition and Crowley–Martin Functional Response</atitle><jtitle>Axioms</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>12</volume><issue>12</issue><spage>1085</spage><pages>1085-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>In this paper, we introduce the Crowley–Martin functional response and nonlocal competition into a reaction–diffusion immunosuppressive infection model. First, we analyze the existence and stability of the positive constant steady states of the systems with nonlocal competition and local competition, respectively. Second, we deduce the conditions for the occurrence of Turing, Hopf, and Turing–Hopf bifurcations of the system with nonlocal competition, as well as the conditions for the occurrence of Hopf bifurcations of the system with local competition. Furthermore, we employ the multiple time scales method to derive the normal forms of the Hopf bifurcations reduced on the center manifold for both systems. Finally, we conduct numerical simulations for both systems under the same parameter settings, compare the impact of nonlocal competition, and find that the nonlocal term can induce spatially inhomogeneous stable periodic solutions. We also provide corresponding biological explanations for the simulation results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms12121085</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1680 |
ispartof | Axioms, 2023-11, Vol.12 (12), p.1085 |
issn | 2075-1680 2075-1680 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_86d256296c814984bf01d7401d85c078 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Canonical forms Competition Crowley–Martin functional response delay Hepatitis HIV Hopf bifurcation Human immunodeficiency virus Immune system Immunosuppression immunosuppressive infection model Infection Infections Mathematical models nonlocal competition Pathogens Stability analysis Viruses |
title | Spatiotemporal Dynamics of a Diffusive Immunosuppressive Infection Model with Nonlocal Competition and Crowley–Martin Functional Response |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Dynamics%20of%20a%20Diffusive%20Immunosuppressive%20Infection%20Model%20with%20Nonlocal%20Competition%20and%20Crowley%E2%80%93Martin%20Functional%20Response&rft.jtitle=Axioms&rft.au=Xue,%20Yuan&rft.date=2023-11-01&rft.volume=12&rft.issue=12&rft.spage=1085&rft.pages=1085-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms12121085&rft_dat=%3Cgale_doaj_%3EA777496343%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-ddd353409b0129921bbd4372712edd49dcb12e7080cbff0aee9834e7be39f9693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904628524&rft_id=info:pmid/&rft_galeid=A777496343&rfr_iscdi=true |