Loading…

Optimizing the Sampling Area across an Old-Growth Forest via UAV-Borne Laser Scanning, GNSS, and Radial Surveying

Aboveground biomass, volume, and basal area are among the most important structural attributes in forestry. Direct measurements are cost-intensive and time-consuming, especially for old-growth forests exhibiting a complex structure over a rugged topography. We defined a methodology to optimize the p...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS international journal of geo-information 2022-03, Vol.11 (3), p.168
Main Authors: Sferlazza, Sebastiano, Maltese, Antonino, Dardanelli, Gino, La Mela Veca, Donato Salvatore
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-24064dda4713ff024c28d87dbb6a14e6b60e5af7870e838f6eca7d9e0060534b3
cites cdi_FETCH-LOGICAL-c367t-24064dda4713ff024c28d87dbb6a14e6b60e5af7870e838f6eca7d9e0060534b3
container_end_page
container_issue 3
container_start_page 168
container_title ISPRS international journal of geo-information
container_volume 11
creator Sferlazza, Sebastiano
Maltese, Antonino
Dardanelli, Gino
La Mela Veca, Donato Salvatore
description Aboveground biomass, volume, and basal area are among the most important structural attributes in forestry. Direct measurements are cost-intensive and time-consuming, especially for old-growth forests exhibiting a complex structure over a rugged topography. We defined a methodology to optimize the plot size and the (total) sampling area, allowing for structural attributes with a tolerable error to be estimated. The plot size was assessed by analyzing the semivariogram of a CHM model derived via UAV laser scanning, while the sampling area was based on the calculation of the absolute relative error as a function of allometric relationships. The allometric relationships allowed the structural attributes from trees’ height to be derived. The validation was based on the positioning of a number of trees via total station and GNSS surveys. Since high trees occlude the GNSS signal transmission, a strategy to facilitate the positioning was to fix the solution using the GLONASS constellation alone (showing the highest visibility during the survey), and then using the GPS constellation to increase the position accuracy (up to PDOP~5−10). The tree heights estimated via UAV laser scanning were strongly correlated (r2 = 0.98, RMSE = 2.80 m) with those measured in situ. Assuming a maximum absolute relative error in the estimation of the structural attribute (20% within this work), the proposed methodology allowed the portion of the forest surface (≤60%) to be sampled to be quantified to obtain a low average error in the calculation of the above mentioned structural attributes (≤13%).
doi_str_mv 10.3390/ijgi11030168
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_86d6744ddfef4938887e6bcafe651f5a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_86d6744ddfef4938887e6bcafe651f5a</doaj_id><sourcerecordid>2642404639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-24064dda4713ff024c28d87dbb6a14e6b60e5af7870e838f6eca7d9e0060534b3</originalsourceid><addsrcrecordid>eNpNUVtPwjAUXowmEuTNH9DEV6btWrruEYkiCZHEia_N2dpCyVihGxj89RYwhvNy7t93LlF0T_AjpRl-squFJQRTTLi4ijpJkuA4yzi7vrBvo17TrHCQjFDBcCfazjatXdsfWy9Qu9Qoh_WmOjpDrwFB6V3TIKjRrFLx2LvvdolenddNi_YW0Hz4FT87X2s0hUZ7lJdQ16G7j8bved4PjQp9gLJQoXzn9_oQcnfRjYGq0b0_3Y3mry-fo7d4OhtPRsNpXFKetnHCMGdKAUsJNQYnrEyEEqkqCg6EaV5wrAdgUpFiLagwXJeQqkxjzPGAsoJ2o8kZVzlYyY23a_AH6cDKU8D5hQTf2rLSUnDFUxbYjDYso0KINBCUYDQfEDOAgPVwxtp4t92F7eXK7XwdxpcJZ2FUxmkWqvrnqtPVvDb_rATL44_k5Y_oL-6ogz8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642404639</pqid></control><display><type>article</type><title>Optimizing the Sampling Area across an Old-Growth Forest via UAV-Borne Laser Scanning, GNSS, and Radial Surveying</title><source>Publicly Available Content Database</source><creator>Sferlazza, Sebastiano ; Maltese, Antonino ; Dardanelli, Gino ; La Mela Veca, Donato Salvatore</creator><creatorcontrib>Sferlazza, Sebastiano ; Maltese, Antonino ; Dardanelli, Gino ; La Mela Veca, Donato Salvatore</creatorcontrib><description>Aboveground biomass, volume, and basal area are among the most important structural attributes in forestry. Direct measurements are cost-intensive and time-consuming, especially for old-growth forests exhibiting a complex structure over a rugged topography. We defined a methodology to optimize the plot size and the (total) sampling area, allowing for structural attributes with a tolerable error to be estimated. The plot size was assessed by analyzing the semivariogram of a CHM model derived via UAV laser scanning, while the sampling area was based on the calculation of the absolute relative error as a function of allometric relationships. The allometric relationships allowed the structural attributes from trees’ height to be derived. The validation was based on the positioning of a number of trees via total station and GNSS surveys. Since high trees occlude the GNSS signal transmission, a strategy to facilitate the positioning was to fix the solution using the GLONASS constellation alone (showing the highest visibility during the survey), and then using the GPS constellation to increase the position accuracy (up to PDOP~5−10). The tree heights estimated via UAV laser scanning were strongly correlated (r2 = 0.98, RMSE = 2.80 m) with those measured in situ. Assuming a maximum absolute relative error in the estimation of the structural attribute (20% within this work), the proposed methodology allowed the portion of the forest surface (≤60%) to be sampled to be quantified to obtain a low average error in the calculation of the above mentioned structural attributes (≤13%).</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi11030168</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aboveground biomass ; Accuracy ; Aerial surveys ; Allometry ; Forestry ; Forests ; Global Navigation Satellite System (GNSS) ; Global positioning systems ; GPS ; Laser applications ; Lasers ; LiDAR ; Methods ; Optimization ; Remote sensing ; Sampling ; Satellite constellations ; Scanning ; semivariogram analysis ; Signal transmission ; Software ; stand structural attributes ; Surveying ; Surveys ; Topography ; tree height ; Trees ; Unmanned aerial vehicles ; Visibility</subject><ispartof>ISPRS international journal of geo-information, 2022-03, Vol.11 (3), p.168</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-24064dda4713ff024c28d87dbb6a14e6b60e5af7870e838f6eca7d9e0060534b3</citedby><cites>FETCH-LOGICAL-c367t-24064dda4713ff024c28d87dbb6a14e6b60e5af7870e838f6eca7d9e0060534b3</cites><orcidid>0000-0003-0921-0103 ; 0000-0002-1333-7417 ; 0000-0002-2778-4680 ; 0000-0002-8458-0676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642404639/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642404639?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Sferlazza, Sebastiano</creatorcontrib><creatorcontrib>Maltese, Antonino</creatorcontrib><creatorcontrib>Dardanelli, Gino</creatorcontrib><creatorcontrib>La Mela Veca, Donato Salvatore</creatorcontrib><title>Optimizing the Sampling Area across an Old-Growth Forest via UAV-Borne Laser Scanning, GNSS, and Radial Surveying</title><title>ISPRS international journal of geo-information</title><description>Aboveground biomass, volume, and basal area are among the most important structural attributes in forestry. Direct measurements are cost-intensive and time-consuming, especially for old-growth forests exhibiting a complex structure over a rugged topography. We defined a methodology to optimize the plot size and the (total) sampling area, allowing for structural attributes with a tolerable error to be estimated. The plot size was assessed by analyzing the semivariogram of a CHM model derived via UAV laser scanning, while the sampling area was based on the calculation of the absolute relative error as a function of allometric relationships. The allometric relationships allowed the structural attributes from trees’ height to be derived. The validation was based on the positioning of a number of trees via total station and GNSS surveys. Since high trees occlude the GNSS signal transmission, a strategy to facilitate the positioning was to fix the solution using the GLONASS constellation alone (showing the highest visibility during the survey), and then using the GPS constellation to increase the position accuracy (up to PDOP~5−10). The tree heights estimated via UAV laser scanning were strongly correlated (r2 = 0.98, RMSE = 2.80 m) with those measured in situ. Assuming a maximum absolute relative error in the estimation of the structural attribute (20% within this work), the proposed methodology allowed the portion of the forest surface (≤60%) to be sampled to be quantified to obtain a low average error in the calculation of the above mentioned structural attributes (≤13%).</description><subject>aboveground biomass</subject><subject>Accuracy</subject><subject>Aerial surveys</subject><subject>Allometry</subject><subject>Forestry</subject><subject>Forests</subject><subject>Global Navigation Satellite System (GNSS)</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>LiDAR</subject><subject>Methods</subject><subject>Optimization</subject><subject>Remote sensing</subject><subject>Sampling</subject><subject>Satellite constellations</subject><subject>Scanning</subject><subject>semivariogram analysis</subject><subject>Signal transmission</subject><subject>Software</subject><subject>stand structural attributes</subject><subject>Surveying</subject><subject>Surveys</subject><subject>Topography</subject><subject>tree height</subject><subject>Trees</subject><subject>Unmanned aerial vehicles</subject><subject>Visibility</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUVtPwjAUXowmEuTNH9DEV6btWrruEYkiCZHEia_N2dpCyVihGxj89RYwhvNy7t93LlF0T_AjpRl-squFJQRTTLi4ijpJkuA4yzi7vrBvo17TrHCQjFDBcCfazjatXdsfWy9Qu9Qoh_WmOjpDrwFB6V3TIKjRrFLx2LvvdolenddNi_YW0Hz4FT87X2s0hUZ7lJdQ16G7j8bved4PjQp9gLJQoXzn9_oQcnfRjYGq0b0_3Y3mry-fo7d4OhtPRsNpXFKetnHCMGdKAUsJNQYnrEyEEqkqCg6EaV5wrAdgUpFiLagwXJeQqkxjzPGAsoJ2o8kZVzlYyY23a_AH6cDKU8D5hQTf2rLSUnDFUxbYjDYso0KINBCUYDQfEDOAgPVwxtp4t92F7eXK7XwdxpcJZ2FUxmkWqvrnqtPVvDb_rATL44_k5Y_oL-6ogz8</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Sferlazza, Sebastiano</creator><creator>Maltese, Antonino</creator><creator>Dardanelli, Gino</creator><creator>La Mela Veca, Donato Salvatore</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0921-0103</orcidid><orcidid>https://orcid.org/0000-0002-1333-7417</orcidid><orcidid>https://orcid.org/0000-0002-2778-4680</orcidid><orcidid>https://orcid.org/0000-0002-8458-0676</orcidid></search><sort><creationdate>20220301</creationdate><title>Optimizing the Sampling Area across an Old-Growth Forest via UAV-Borne Laser Scanning, GNSS, and Radial Surveying</title><author>Sferlazza, Sebastiano ; Maltese, Antonino ; Dardanelli, Gino ; La Mela Veca, Donato Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-24064dda4713ff024c28d87dbb6a14e6b60e5af7870e838f6eca7d9e0060534b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>aboveground biomass</topic><topic>Accuracy</topic><topic>Aerial surveys</topic><topic>Allometry</topic><topic>Forestry</topic><topic>Forests</topic><topic>Global Navigation Satellite System (GNSS)</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>LiDAR</topic><topic>Methods</topic><topic>Optimization</topic><topic>Remote sensing</topic><topic>Sampling</topic><topic>Satellite constellations</topic><topic>Scanning</topic><topic>semivariogram analysis</topic><topic>Signal transmission</topic><topic>Software</topic><topic>stand structural attributes</topic><topic>Surveying</topic><topic>Surveys</topic><topic>Topography</topic><topic>tree height</topic><topic>Trees</topic><topic>Unmanned aerial vehicles</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sferlazza, Sebastiano</creatorcontrib><creatorcontrib>Maltese, Antonino</creatorcontrib><creatorcontrib>Dardanelli, Gino</creatorcontrib><creatorcontrib>La Mela Veca, Donato Salvatore</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sferlazza, Sebastiano</au><au>Maltese, Antonino</au><au>Dardanelli, Gino</au><au>La Mela Veca, Donato Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the Sampling Area across an Old-Growth Forest via UAV-Borne Laser Scanning, GNSS, and Radial Surveying</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>11</volume><issue>3</issue><spage>168</spage><pages>168-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Aboveground biomass, volume, and basal area are among the most important structural attributes in forestry. Direct measurements are cost-intensive and time-consuming, especially for old-growth forests exhibiting a complex structure over a rugged topography. We defined a methodology to optimize the plot size and the (total) sampling area, allowing for structural attributes with a tolerable error to be estimated. The plot size was assessed by analyzing the semivariogram of a CHM model derived via UAV laser scanning, while the sampling area was based on the calculation of the absolute relative error as a function of allometric relationships. The allometric relationships allowed the structural attributes from trees’ height to be derived. The validation was based on the positioning of a number of trees via total station and GNSS surveys. Since high trees occlude the GNSS signal transmission, a strategy to facilitate the positioning was to fix the solution using the GLONASS constellation alone (showing the highest visibility during the survey), and then using the GPS constellation to increase the position accuracy (up to PDOP~5−10). The tree heights estimated via UAV laser scanning were strongly correlated (r2 = 0.98, RMSE = 2.80 m) with those measured in situ. Assuming a maximum absolute relative error in the estimation of the structural attribute (20% within this work), the proposed methodology allowed the portion of the forest surface (≤60%) to be sampled to be quantified to obtain a low average error in the calculation of the above mentioned structural attributes (≤13%).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi11030168</doi><orcidid>https://orcid.org/0000-0003-0921-0103</orcidid><orcidid>https://orcid.org/0000-0002-1333-7417</orcidid><orcidid>https://orcid.org/0000-0002-2778-4680</orcidid><orcidid>https://orcid.org/0000-0002-8458-0676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-9964
ispartof ISPRS international journal of geo-information, 2022-03, Vol.11 (3), p.168
issn 2220-9964
2220-9964
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_86d6744ddfef4938887e6bcafe651f5a
source Publicly Available Content Database
subjects aboveground biomass
Accuracy
Aerial surveys
Allometry
Forestry
Forests
Global Navigation Satellite System (GNSS)
Global positioning systems
GPS
Laser applications
Lasers
LiDAR
Methods
Optimization
Remote sensing
Sampling
Satellite constellations
Scanning
semivariogram analysis
Signal transmission
Software
stand structural attributes
Surveying
Surveys
Topography
tree height
Trees
Unmanned aerial vehicles
Visibility
title Optimizing the Sampling Area across an Old-Growth Forest via UAV-Borne Laser Scanning, GNSS, and Radial Surveying
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20Sampling%20Area%20across%20an%20Old-Growth%20Forest%20via%20UAV-Borne%20Laser%20Scanning,%20GNSS,%20and%20Radial%20Surveying&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Sferlazza,%20Sebastiano&rft.date=2022-03-01&rft.volume=11&rft.issue=3&rft.spage=168&rft.pages=168-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi11030168&rft_dat=%3Cproquest_doaj_%3E2642404639%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-24064dda4713ff024c28d87dbb6a14e6b60e5af7870e838f6eca7d9e0060534b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642404639&rft_id=info:pmid/&rfr_iscdi=true