Loading…
A silicon singlet–triplet qubit driven by spin-valley coupling
Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating...
Saved in:
Published in: | Nature communications 2022-02, Vol.13 (1), p.641-641, Article 641 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413 |
container_end_page | 641 |
container_issue | 1 |
container_start_page | 641 |
container_title | Nature communications |
container_volume | 13 |
creator | Jock, Ryan M. Jacobson, N. Tobias Rudolph, Martin Ward, Daniel R. Carroll, Malcolm S. Luhman, Dwight R. |
description | Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/
f
α
dependence consistent with
α
~ 0.7, over 9 orders of magnitude in noise frequency.
Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz. |
doi_str_mv | 10.1038/s41467-022-28302-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_86e100879aa34965a9c75ae65b4b0006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_86e100879aa34965a9c75ae65b4b0006</doaj_id><sourcerecordid>2625260722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXpC3BAEVy4BPzfzgVRVS1UqsQFzpYz8W698tpb21kpt74Db8iT4DaltBzwZUae33xjj76meY3RB4yo-pgZZkJ2iJCOKIpINz9rDgliuMOS0OeP8oPmOOcNqof2WDH2sjmgHGPEBT5sPp-02XkHMdQY1t6WXzc_S3K7mrXX0-BKOya3t6Ed5jbvXOj2xns7txCnna8dr5oXK-OzPb6PR82P87Pvp1-7y29fLk5PLjvgQpbOgmRMmBUGZSlYJHiPRi5ZDyOWA1DKKBBEuJRiBAZSKiFHZehowVDCMD1qLhbdMZqN3iW3NWnW0Th9dxHTWptUHHirlbAYISV7YyjrBTc9SG6s4AMb6hZE1fq0aO2mYWtHsKEk45-IPq0Ed6XXca-VwkgKVQXeLgIxF6czuGLhqu4wWCgaK0WUpBV6fz8lxevJ5qK3LoP13gQbp6yJIJwIJAmp6Lt_0E2cUqj7vKWYQoiTvlJkoSDFnJNdPbwYI31rCr2YQldT6DtT6Lk2vXn814eWPxaoAF2AXEthbdPf2f-R_Q3LmsHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624800529</pqid></control><display><type>article</type><title>A silicon singlet–triplet qubit driven by spin-valley coupling</title><source>Nature_系列刊</source><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jock, Ryan M. ; Jacobson, N. Tobias ; Rudolph, Martin ; Ward, Daniel R. ; Carroll, Malcolm S. ; Luhman, Dwight R.</creator><creatorcontrib>Jock, Ryan M. ; Jacobson, N. Tobias ; Rudolph, Martin ; Ward, Daniel R. ; Carroll, Malcolm S. ; Luhman, Dwight R. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/
f
α
dependence consistent with
α
~ 0.7, over 9 orders of magnitude in noise frequency.
Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-28302-y</identifier><identifier>PMID: 35110561</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/925/927/481 ; Charge density ; Decoupling ; Electron spin ; Electronics industry ; Electrons ; Frequency drift ; Humanities and Social Sciences ; LF noise ; Logic circuits ; MATHEMATICS AND COMPUTING ; Metal oxide semiconductors ; multidisciplinary ; Noise ; Orthogonality ; Power spectral density ; Quantum dots ; quantum information ; qubits ; Qubits (quantum computing) ; Science ; Science (multidisciplinary) ; Silicon ; Spin-orbit interactions ; Striplines</subject><ispartof>Nature communications, 2022-02, Vol.13 (1), p.641-641, Article 641</ispartof><rights>National Technology & Engineering Solutions of Sandia, LLC 2022. corrected publication 2022</rights><rights>2022. The Author(s).</rights><rights>National Technology & Engineering Solutions of Sandia, LLC 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>National Technology & Engineering Solutions of Sandia, LLC 2022, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413</citedby><cites>FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413</cites><orcidid>0000-0002-1352-0190 ; 0000-0002-9263-5542 ; 0000000292635542 ; 0000000213520190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2624800529/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2624800529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35110561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1882873$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jock, Ryan M.</creatorcontrib><creatorcontrib>Jacobson, N. Tobias</creatorcontrib><creatorcontrib>Rudolph, Martin</creatorcontrib><creatorcontrib>Ward, Daniel R.</creatorcontrib><creatorcontrib>Carroll, Malcolm S.</creatorcontrib><creatorcontrib>Luhman, Dwight R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>A silicon singlet–triplet qubit driven by spin-valley coupling</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/
f
α
dependence consistent with
α
~ 0.7, over 9 orders of magnitude in noise frequency.
Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz.</description><subject>639/766/483/2802</subject><subject>639/925/927/481</subject><subject>Charge density</subject><subject>Decoupling</subject><subject>Electron spin</subject><subject>Electronics industry</subject><subject>Electrons</subject><subject>Frequency drift</subject><subject>Humanities and Social Sciences</subject><subject>LF noise</subject><subject>Logic circuits</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Metal oxide semiconductors</subject><subject>multidisciplinary</subject><subject>Noise</subject><subject>Orthogonality</subject><subject>Power spectral density</subject><subject>Quantum dots</subject><subject>quantum information</subject><subject>qubits</subject><subject>Qubits (quantum computing)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon</subject><subject>Spin-orbit interactions</subject><subject>Striplines</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXpC3BAEVy4BPzfzgVRVS1UqsQFzpYz8W698tpb21kpt74Db8iT4DaltBzwZUae33xjj76meY3RB4yo-pgZZkJ2iJCOKIpINz9rDgliuMOS0OeP8oPmOOcNqof2WDH2sjmgHGPEBT5sPp-02XkHMdQY1t6WXzc_S3K7mrXX0-BKOya3t6Ed5jbvXOj2xns7txCnna8dr5oXK-OzPb6PR82P87Pvp1-7y29fLk5PLjvgQpbOgmRMmBUGZSlYJHiPRi5ZDyOWA1DKKBBEuJRiBAZSKiFHZehowVDCMD1qLhbdMZqN3iW3NWnW0Th9dxHTWptUHHirlbAYISV7YyjrBTc9SG6s4AMb6hZE1fq0aO2mYWtHsKEk45-IPq0Ed6XXca-VwkgKVQXeLgIxF6czuGLhqu4wWCgaK0WUpBV6fz8lxevJ5qK3LoP13gQbp6yJIJwIJAmp6Lt_0E2cUqj7vKWYQoiTvlJkoSDFnJNdPbwYI31rCr2YQldT6DtT6Lk2vXn814eWPxaoAF2AXEthbdPf2f-R_Q3LmsHQ</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Jock, Ryan M.</creator><creator>Jacobson, N. Tobias</creator><creator>Rudolph, Martin</creator><creator>Ward, Daniel R.</creator><creator>Carroll, Malcolm S.</creator><creator>Luhman, Dwight R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1352-0190</orcidid><orcidid>https://orcid.org/0000-0002-9263-5542</orcidid><orcidid>https://orcid.org/0000000292635542</orcidid><orcidid>https://orcid.org/0000000213520190</orcidid></search><sort><creationdate>20220202</creationdate><title>A silicon singlet–triplet qubit driven by spin-valley coupling</title><author>Jock, Ryan M. ; Jacobson, N. Tobias ; Rudolph, Martin ; Ward, Daniel R. ; Carroll, Malcolm S. ; Luhman, Dwight R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/483/2802</topic><topic>639/925/927/481</topic><topic>Charge density</topic><topic>Decoupling</topic><topic>Electron spin</topic><topic>Electronics industry</topic><topic>Electrons</topic><topic>Frequency drift</topic><topic>Humanities and Social Sciences</topic><topic>LF noise</topic><topic>Logic circuits</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Metal oxide semiconductors</topic><topic>multidisciplinary</topic><topic>Noise</topic><topic>Orthogonality</topic><topic>Power spectral density</topic><topic>Quantum dots</topic><topic>quantum information</topic><topic>qubits</topic><topic>Qubits (quantum computing)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon</topic><topic>Spin-orbit interactions</topic><topic>Striplines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jock, Ryan M.</creatorcontrib><creatorcontrib>Jacobson, N. Tobias</creatorcontrib><creatorcontrib>Rudolph, Martin</creatorcontrib><creatorcontrib>Ward, Daniel R.</creatorcontrib><creatorcontrib>Carroll, Malcolm S.</creatorcontrib><creatorcontrib>Luhman, Dwight R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jock, Ryan M.</au><au>Jacobson, N. Tobias</au><au>Rudolph, Martin</au><au>Ward, Daniel R.</au><au>Carroll, Malcolm S.</au><au>Luhman, Dwight R.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A silicon singlet–triplet qubit driven by spin-valley coupling</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-02-02</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>641</spage><epage>641</epage><pages>641-641</pages><artnum>641</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/
f
α
dependence consistent with
α
~ 0.7, over 9 orders of magnitude in noise frequency.
Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35110561</pmid><doi>10.1038/s41467-022-28302-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1352-0190</orcidid><orcidid>https://orcid.org/0000-0002-9263-5542</orcidid><orcidid>https://orcid.org/0000000292635542</orcidid><orcidid>https://orcid.org/0000000213520190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-02, Vol.13 (1), p.641-641, Article 641 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_86e100879aa34965a9c75ae65b4b0006 |
source | Nature_系列刊; PubMed Central (Open Access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/483/2802 639/925/927/481 Charge density Decoupling Electron spin Electronics industry Electrons Frequency drift Humanities and Social Sciences LF noise Logic circuits MATHEMATICS AND COMPUTING Metal oxide semiconductors multidisciplinary Noise Orthogonality Power spectral density Quantum dots quantum information qubits Qubits (quantum computing) Science Science (multidisciplinary) Silicon Spin-orbit interactions Striplines |
title | A silicon singlet–triplet qubit driven by spin-valley coupling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20silicon%20singlet%E2%80%93triplet%20qubit%20driven%20by%20spin-valley%20coupling&rft.jtitle=Nature%20communications&rft.au=Jock,%20Ryan%20M.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2022-02-02&rft.volume=13&rft.issue=1&rft.spage=641&rft.epage=641&rft.pages=641-641&rft.artnum=641&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-28302-y&rft_dat=%3Cproquest_doaj_%3E2625260722%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624800529&rft_id=info:pmid/35110561&rfr_iscdi=true |