Loading…

A silicon singlet–triplet qubit driven by spin-valley coupling

Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-02, Vol.13 (1), p.641-641, Article 641
Main Authors: Jock, Ryan M., Jacobson, N. Tobias, Rudolph, Martin, Ward, Daniel R., Carroll, Malcolm S., Luhman, Dwight R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413
cites cdi_FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413
container_end_page 641
container_issue 1
container_start_page 641
container_title Nature communications
container_volume 13
creator Jock, Ryan M.
Jacobson, N. Tobias
Rudolph, Martin
Ward, Daniel R.
Carroll, Malcolm S.
Luhman, Dwight R.
description Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/ f α dependence consistent with α  ~ 0.7, over 9 orders of magnitude in noise frequency. Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz.
doi_str_mv 10.1038/s41467-022-28302-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_86e100879aa34965a9c75ae65b4b0006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_86e100879aa34965a9c75ae65b4b0006</doaj_id><sourcerecordid>2625260722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXpC3BAEVy4BPzfzgVRVS1UqsQFzpYz8W698tpb21kpt74Db8iT4DaltBzwZUae33xjj76meY3RB4yo-pgZZkJ2iJCOKIpINz9rDgliuMOS0OeP8oPmOOcNqof2WDH2sjmgHGPEBT5sPp-02XkHMdQY1t6WXzc_S3K7mrXX0-BKOya3t6Ed5jbvXOj2xns7txCnna8dr5oXK-OzPb6PR82P87Pvp1-7y29fLk5PLjvgQpbOgmRMmBUGZSlYJHiPRi5ZDyOWA1DKKBBEuJRiBAZSKiFHZehowVDCMD1qLhbdMZqN3iW3NWnW0Th9dxHTWptUHHirlbAYISV7YyjrBTc9SG6s4AMb6hZE1fq0aO2mYWtHsKEk45-IPq0Ed6XXca-VwkgKVQXeLgIxF6czuGLhqu4wWCgaK0WUpBV6fz8lxevJ5qK3LoP13gQbp6yJIJwIJAmp6Lt_0E2cUqj7vKWYQoiTvlJkoSDFnJNdPbwYI31rCr2YQldT6DtT6Lk2vXn814eWPxaoAF2AXEthbdPf2f-R_Q3LmsHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624800529</pqid></control><display><type>article</type><title>A silicon singlet–triplet qubit driven by spin-valley coupling</title><source>Nature_系列刊</source><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jock, Ryan M. ; Jacobson, N. Tobias ; Rudolph, Martin ; Ward, Daniel R. ; Carroll, Malcolm S. ; Luhman, Dwight R.</creator><creatorcontrib>Jock, Ryan M. ; Jacobson, N. Tobias ; Rudolph, Martin ; Ward, Daniel R. ; Carroll, Malcolm S. ; Luhman, Dwight R. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/ f α dependence consistent with α  ~ 0.7, over 9 orders of magnitude in noise frequency. Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-28302-y</identifier><identifier>PMID: 35110561</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/925/927/481 ; Charge density ; Decoupling ; Electron spin ; Electronics industry ; Electrons ; Frequency drift ; Humanities and Social Sciences ; LF noise ; Logic circuits ; MATHEMATICS AND COMPUTING ; Metal oxide semiconductors ; multidisciplinary ; Noise ; Orthogonality ; Power spectral density ; Quantum dots ; quantum information ; qubits ; Qubits (quantum computing) ; Science ; Science (multidisciplinary) ; Silicon ; Spin-orbit interactions ; Striplines</subject><ispartof>Nature communications, 2022-02, Vol.13 (1), p.641-641, Article 641</ispartof><rights>National Technology &amp; Engineering Solutions of Sandia, LLC 2022. corrected publication 2022</rights><rights>2022. The Author(s).</rights><rights>National Technology &amp; Engineering Solutions of Sandia, LLC 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>National Technology &amp; Engineering Solutions of Sandia, LLC 2022, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413</citedby><cites>FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413</cites><orcidid>0000-0002-1352-0190 ; 0000-0002-9263-5542 ; 0000000292635542 ; 0000000213520190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2624800529/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2624800529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35110561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1882873$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jock, Ryan M.</creatorcontrib><creatorcontrib>Jacobson, N. Tobias</creatorcontrib><creatorcontrib>Rudolph, Martin</creatorcontrib><creatorcontrib>Ward, Daniel R.</creatorcontrib><creatorcontrib>Carroll, Malcolm S.</creatorcontrib><creatorcontrib>Luhman, Dwight R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>A silicon singlet–triplet qubit driven by spin-valley coupling</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/ f α dependence consistent with α  ~ 0.7, over 9 orders of magnitude in noise frequency. Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz.</description><subject>639/766/483/2802</subject><subject>639/925/927/481</subject><subject>Charge density</subject><subject>Decoupling</subject><subject>Electron spin</subject><subject>Electronics industry</subject><subject>Electrons</subject><subject>Frequency drift</subject><subject>Humanities and Social Sciences</subject><subject>LF noise</subject><subject>Logic circuits</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Metal oxide semiconductors</subject><subject>multidisciplinary</subject><subject>Noise</subject><subject>Orthogonality</subject><subject>Power spectral density</subject><subject>Quantum dots</subject><subject>quantum information</subject><subject>qubits</subject><subject>Qubits (quantum computing)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon</subject><subject>Spin-orbit interactions</subject><subject>Striplines</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXpC3BAEVy4BPzfzgVRVS1UqsQFzpYz8W698tpb21kpt74Db8iT4DaltBzwZUae33xjj76meY3RB4yo-pgZZkJ2iJCOKIpINz9rDgliuMOS0OeP8oPmOOcNqof2WDH2sjmgHGPEBT5sPp-02XkHMdQY1t6WXzc_S3K7mrXX0-BKOya3t6Ed5jbvXOj2xns7txCnna8dr5oXK-OzPb6PR82P87Pvp1-7y29fLk5PLjvgQpbOgmRMmBUGZSlYJHiPRi5ZDyOWA1DKKBBEuJRiBAZSKiFHZehowVDCMD1qLhbdMZqN3iW3NWnW0Th9dxHTWptUHHirlbAYISV7YyjrBTc9SG6s4AMb6hZE1fq0aO2mYWtHsKEk45-IPq0Ed6XXca-VwkgKVQXeLgIxF6czuGLhqu4wWCgaK0WUpBV6fz8lxevJ5qK3LoP13gQbp6yJIJwIJAmp6Lt_0E2cUqj7vKWYQoiTvlJkoSDFnJNdPbwYI31rCr2YQldT6DtT6Lk2vXn814eWPxaoAF2AXEthbdPf2f-R_Q3LmsHQ</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Jock, Ryan M.</creator><creator>Jacobson, N. Tobias</creator><creator>Rudolph, Martin</creator><creator>Ward, Daniel R.</creator><creator>Carroll, Malcolm S.</creator><creator>Luhman, Dwight R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1352-0190</orcidid><orcidid>https://orcid.org/0000-0002-9263-5542</orcidid><orcidid>https://orcid.org/0000000292635542</orcidid><orcidid>https://orcid.org/0000000213520190</orcidid></search><sort><creationdate>20220202</creationdate><title>A silicon singlet–triplet qubit driven by spin-valley coupling</title><author>Jock, Ryan M. ; Jacobson, N. Tobias ; Rudolph, Martin ; Ward, Daniel R. ; Carroll, Malcolm S. ; Luhman, Dwight R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/483/2802</topic><topic>639/925/927/481</topic><topic>Charge density</topic><topic>Decoupling</topic><topic>Electron spin</topic><topic>Electronics industry</topic><topic>Electrons</topic><topic>Frequency drift</topic><topic>Humanities and Social Sciences</topic><topic>LF noise</topic><topic>Logic circuits</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Metal oxide semiconductors</topic><topic>multidisciplinary</topic><topic>Noise</topic><topic>Orthogonality</topic><topic>Power spectral density</topic><topic>Quantum dots</topic><topic>quantum information</topic><topic>qubits</topic><topic>Qubits (quantum computing)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon</topic><topic>Spin-orbit interactions</topic><topic>Striplines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jock, Ryan M.</creatorcontrib><creatorcontrib>Jacobson, N. Tobias</creatorcontrib><creatorcontrib>Rudolph, Martin</creatorcontrib><creatorcontrib>Ward, Daniel R.</creatorcontrib><creatorcontrib>Carroll, Malcolm S.</creatorcontrib><creatorcontrib>Luhman, Dwight R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jock, Ryan M.</au><au>Jacobson, N. Tobias</au><au>Rudolph, Martin</au><au>Ward, Daniel R.</au><au>Carroll, Malcolm S.</au><au>Luhman, Dwight R.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A silicon singlet–triplet qubit driven by spin-valley coupling</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-02-02</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>641</spage><epage>641</epage><pages>641-641</pages><artnum>641</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Spin–orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface, provide a means to control electron spin qubits without the added complexity of on-chip, nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a singlet–triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz. This approach offers a means to electrically turn on and off fast control, while providing high logic gate orthogonality and long qubit dephasing times. We utilize this operational mode for dynamical decoupling experiments to probe the charge noise power spectrum in a silicon metal-oxide-semiconductor double quantum dot. In addition, we assess qubit frequency drift over longer timescales to capture low-frequency noise. We present the charge noise power spectral density up to 3 MHz, which exhibits a 1/ f α dependence consistent with α  ~ 0.7, over 9 orders of magnitude in noise frequency. Spin-orbit coupling in gate-defined quantum dots in silicon metal-oxide semiconductors provides a promising route for electrical control of spin qubits. Here, the authors demonstrate that intervalley spin–orbit interaction enables fast singlet–triplet qubit rotations in this platform, at frequencies exceeding 200MHz.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35110561</pmid><doi>10.1038/s41467-022-28302-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1352-0190</orcidid><orcidid>https://orcid.org/0000-0002-9263-5542</orcidid><orcidid>https://orcid.org/0000000292635542</orcidid><orcidid>https://orcid.org/0000000213520190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-02, Vol.13 (1), p.641-641, Article 641
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_86e100879aa34965a9c75ae65b4b0006
source Nature_系列刊; PubMed Central (Open Access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/483/2802
639/925/927/481
Charge density
Decoupling
Electron spin
Electronics industry
Electrons
Frequency drift
Humanities and Social Sciences
LF noise
Logic circuits
MATHEMATICS AND COMPUTING
Metal oxide semiconductors
multidisciplinary
Noise
Orthogonality
Power spectral density
Quantum dots
quantum information
qubits
Qubits (quantum computing)
Science
Science (multidisciplinary)
Silicon
Spin-orbit interactions
Striplines
title A silicon singlet–triplet qubit driven by spin-valley coupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20silicon%20singlet%E2%80%93triplet%20qubit%20driven%20by%20spin-valley%20coupling&rft.jtitle=Nature%20communications&rft.au=Jock,%20Ryan%20M.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2022-02-02&rft.volume=13&rft.issue=1&rft.spage=641&rft.epage=641&rft.pages=641-641&rft.artnum=641&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-28302-y&rft_dat=%3Cproquest_doaj_%3E2625260722%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-ec7446af1c8e3ce06590d5749cd17bc3343c2025776dc4c77867d8a3deca32413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624800529&rft_id=info:pmid/35110561&rfr_iscdi=true