Loading…

MoMTSim: A Multi-Agent-Based Simulation Platform Calibrated for Mobile Money Transactions

Research on multi-agent systems has extensively modeled real-world phenomena across various domains including epidemiology, urban planning, and financial transactions. These systems often struggle to produce agent behaviors that comprehensively capture the dynamics of the real-world ecosystem and th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.120226-120238
Main Authors: Azamuke, Denish, Katarahweire, Marriette, Bainomugisha, Engineer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-5021689852f32f676ed0b712e659144d3d5cc2bea1327dd3a1b3025f69daf9473
container_end_page 120238
container_issue
container_start_page 120226
container_title IEEE access
container_volume 12
creator Azamuke, Denish
Katarahweire, Marriette
Bainomugisha, Engineer
description Research on multi-agent systems has extensively modeled real-world phenomena across various domains including epidemiology, urban planning, and financial transactions. These systems often struggle to produce agent behaviors that comprehensively capture the dynamics of the real-world ecosystem and the unique behaviors of each agent type. Furthermore, the limited explainability of these models due to non-iterative calibration poses significant challenges. This paper introduces an iterative model calibration algorithm that dynamically adjusts the multitude of parameters in a multi-agent simulation platform. Initially treating the simulation model as a black box, our method refines simulation parameters through cycles of adjustments based on clusters of observed behaviors comprising the behavior of both agents and actors. This approach allows for the identification and correction of inaccuracies, introduces new parameters, and discards erroneous ones within the agent-based model as demonstrated in a Mobile Money Transaction Simulator (MoMTSim). The calibration algorithm enhances the realism and applicability of the simulation model by ensuring that the generated synthetic datasets closely mirror real transaction data. The effectiveness of this calibration method was determined by validating the generated data through comparing the real and synthetic datasets using statistical methods including the Kolmogorov-Smirnov test, the sum of squared errors (SSE) method, and Bland-Altman plots. We computed the delta between the real and synthetic data using the SSE approach and found that the synthetic datasets resemble real data. This shows that MoMTSim effectively generates synthetic data that closely matches real mobile money transaction data, validating the accuracy of our model calibration algorithm in simulating complex financial ecosystems.
doi_str_mv 10.1109/ACCESS.2024.3439012
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_86e345aafb184c23872fb4de1f71f742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623453</ieee_id><doaj_id>oai_doaj_org_article_86e345aafb184c23872fb4de1f71f742</doaj_id><sourcerecordid>3101348532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-5021689852f32f676ed0b712e659144d3d5cc2bea1327dd3a1b3025f69daf9473</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgmPsF-lDwuTPJTfrh2yxTBysKmw8-hbRJRkbXzKR72L83s0MWAufm3ntODpwousdoijEqnmZlOV-tpgQROgUKBcLkKhoRnBYJMEivL-rbaOL9FoWThxbLRtF3Zav1yuye41lcHdreJLON6vrkRXgl4zA4tKI3tos_A2rrdnEpWlM70YdxeMeVrU2rAnTqGK-d6LxoTgR_F91o0Xo1OeM4-nqdr8v3ZPnxtihny6QhedEnDAV3eZEzooHoNEuVRHWGiUpZgSmVIFnTkFoJDCSTEgSuARGm00IKXdAMxtFi0JVWbPnemZ1wR26F4X8N6zZcuN40reJ5qoAyIXSNc9oQyDOiayoV1lm4lAStx0Fr7-zPQfmeb-3BdcE-B4ww0JzBaQuGrcZZ753S_79ixE-R8CESfoqEnyMJrIeBZZRSF4yUBE8Av3FkhdY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101348532</pqid></control><display><type>article</type><title>MoMTSim: A Multi-Agent-Based Simulation Platform Calibrated for Mobile Money Transactions</title><source>IEEE Xplore Open Access Journals</source><creator>Azamuke, Denish ; Katarahweire, Marriette ; Bainomugisha, Engineer</creator><creatorcontrib>Azamuke, Denish ; Katarahweire, Marriette ; Bainomugisha, Engineer</creatorcontrib><description>Research on multi-agent systems has extensively modeled real-world phenomena across various domains including epidemiology, urban planning, and financial transactions. These systems often struggle to produce agent behaviors that comprehensively capture the dynamics of the real-world ecosystem and the unique behaviors of each agent type. Furthermore, the limited explainability of these models due to non-iterative calibration poses significant challenges. This paper introduces an iterative model calibration algorithm that dynamically adjusts the multitude of parameters in a multi-agent simulation platform. Initially treating the simulation model as a black box, our method refines simulation parameters through cycles of adjustments based on clusters of observed behaviors comprising the behavior of both agents and actors. This approach allows for the identification and correction of inaccuracies, introduces new parameters, and discards erroneous ones within the agent-based model as demonstrated in a Mobile Money Transaction Simulator (MoMTSim). The calibration algorithm enhances the realism and applicability of the simulation model by ensuring that the generated synthetic datasets closely mirror real transaction data. The effectiveness of this calibration method was determined by validating the generated data through comparing the real and synthetic datasets using statistical methods including the Kolmogorov-Smirnov test, the sum of squared errors (SSE) method, and Bland-Altman plots. We computed the delta between the real and synthetic data using the SSE approach and found that the synthetic datasets resemble real data. This shows that MoMTSim effectively generates synthetic data that closely matches real mobile money transaction data, validating the accuracy of our model calibration algorithm in simulating complex financial ecosystems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3439012</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agent-based models ; Algorithms ; Calibration ; Data models ; Datasets ; Ecosystems ; Fraud ; Kolmogorov-Smirnov test ; mobile money ; model calibration ; Multi-agent systems ; Multi-agent-based simulation ; Multiagent systems ; Online banking ; Parameter identification ; Simulation ; Simulation models ; Social networking (online) ; Statistical methods ; Synthetic data ; Urban planning</subject><ispartof>IEEE access, 2024, Vol.12, p.120226-120238</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-5021689852f32f676ed0b712e659144d3d5cc2bea1327dd3a1b3025f69daf9473</cites><orcidid>0000-0002-8932-5762 ; 0000-0002-3304-4144 ; 0000-0003-4718-4209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623453$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Azamuke, Denish</creatorcontrib><creatorcontrib>Katarahweire, Marriette</creatorcontrib><creatorcontrib>Bainomugisha, Engineer</creatorcontrib><title>MoMTSim: A Multi-Agent-Based Simulation Platform Calibrated for Mobile Money Transactions</title><title>IEEE access</title><addtitle>Access</addtitle><description>Research on multi-agent systems has extensively modeled real-world phenomena across various domains including epidemiology, urban planning, and financial transactions. These systems often struggle to produce agent behaviors that comprehensively capture the dynamics of the real-world ecosystem and the unique behaviors of each agent type. Furthermore, the limited explainability of these models due to non-iterative calibration poses significant challenges. This paper introduces an iterative model calibration algorithm that dynamically adjusts the multitude of parameters in a multi-agent simulation platform. Initially treating the simulation model as a black box, our method refines simulation parameters through cycles of adjustments based on clusters of observed behaviors comprising the behavior of both agents and actors. This approach allows for the identification and correction of inaccuracies, introduces new parameters, and discards erroneous ones within the agent-based model as demonstrated in a Mobile Money Transaction Simulator (MoMTSim). The calibration algorithm enhances the realism and applicability of the simulation model by ensuring that the generated synthetic datasets closely mirror real transaction data. The effectiveness of this calibration method was determined by validating the generated data through comparing the real and synthetic datasets using statistical methods including the Kolmogorov-Smirnov test, the sum of squared errors (SSE) method, and Bland-Altman plots. We computed the delta between the real and synthetic data using the SSE approach and found that the synthetic datasets resemble real data. This shows that MoMTSim effectively generates synthetic data that closely matches real mobile money transaction data, validating the accuracy of our model calibration algorithm in simulating complex financial ecosystems.</description><subject>Agent-based models</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Data models</subject><subject>Datasets</subject><subject>Ecosystems</subject><subject>Fraud</subject><subject>Kolmogorov-Smirnov test</subject><subject>mobile money</subject><subject>model calibration</subject><subject>Multi-agent systems</subject><subject>Multi-agent-based simulation</subject><subject>Multiagent systems</subject><subject>Online banking</subject><subject>Parameter identification</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Social networking (online)</subject><subject>Statistical methods</subject><subject>Synthetic data</subject><subject>Urban planning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgmPsF-lDwuTPJTfrh2yxTBysKmw8-hbRJRkbXzKR72L83s0MWAufm3ntODpwousdoijEqnmZlOV-tpgQROgUKBcLkKhoRnBYJMEivL-rbaOL9FoWThxbLRtF3Zav1yuye41lcHdreJLON6vrkRXgl4zA4tKI3tos_A2rrdnEpWlM70YdxeMeVrU2rAnTqGK-d6LxoTgR_F91o0Xo1OeM4-nqdr8v3ZPnxtihny6QhedEnDAV3eZEzooHoNEuVRHWGiUpZgSmVIFnTkFoJDCSTEgSuARGm00IKXdAMxtFi0JVWbPnemZ1wR26F4X8N6zZcuN40reJ5qoAyIXSNc9oQyDOiayoV1lm4lAStx0Fr7-zPQfmeb-3BdcE-B4ww0JzBaQuGrcZZ753S_79ixE-R8CESfoqEnyMJrIeBZZRSF4yUBE8Av3FkhdY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Azamuke, Denish</creator><creator>Katarahweire, Marriette</creator><creator>Bainomugisha, Engineer</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8932-5762</orcidid><orcidid>https://orcid.org/0000-0002-3304-4144</orcidid><orcidid>https://orcid.org/0000-0003-4718-4209</orcidid></search><sort><creationdate>2024</creationdate><title>MoMTSim: A Multi-Agent-Based Simulation Platform Calibrated for Mobile Money Transactions</title><author>Azamuke, Denish ; Katarahweire, Marriette ; Bainomugisha, Engineer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-5021689852f32f676ed0b712e659144d3d5cc2bea1327dd3a1b3025f69daf9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agent-based models</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Data models</topic><topic>Datasets</topic><topic>Ecosystems</topic><topic>Fraud</topic><topic>Kolmogorov-Smirnov test</topic><topic>mobile money</topic><topic>model calibration</topic><topic>Multi-agent systems</topic><topic>Multi-agent-based simulation</topic><topic>Multiagent systems</topic><topic>Online banking</topic><topic>Parameter identification</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Social networking (online)</topic><topic>Statistical methods</topic><topic>Synthetic data</topic><topic>Urban planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azamuke, Denish</creatorcontrib><creatorcontrib>Katarahweire, Marriette</creatorcontrib><creatorcontrib>Bainomugisha, Engineer</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azamuke, Denish</au><au>Katarahweire, Marriette</au><au>Bainomugisha, Engineer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoMTSim: A Multi-Agent-Based Simulation Platform Calibrated for Mobile Money Transactions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>120226</spage><epage>120238</epage><pages>120226-120238</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Research on multi-agent systems has extensively modeled real-world phenomena across various domains including epidemiology, urban planning, and financial transactions. These systems often struggle to produce agent behaviors that comprehensively capture the dynamics of the real-world ecosystem and the unique behaviors of each agent type. Furthermore, the limited explainability of these models due to non-iterative calibration poses significant challenges. This paper introduces an iterative model calibration algorithm that dynamically adjusts the multitude of parameters in a multi-agent simulation platform. Initially treating the simulation model as a black box, our method refines simulation parameters through cycles of adjustments based on clusters of observed behaviors comprising the behavior of both agents and actors. This approach allows for the identification and correction of inaccuracies, introduces new parameters, and discards erroneous ones within the agent-based model as demonstrated in a Mobile Money Transaction Simulator (MoMTSim). The calibration algorithm enhances the realism and applicability of the simulation model by ensuring that the generated synthetic datasets closely mirror real transaction data. The effectiveness of this calibration method was determined by validating the generated data through comparing the real and synthetic datasets using statistical methods including the Kolmogorov-Smirnov test, the sum of squared errors (SSE) method, and Bland-Altman plots. We computed the delta between the real and synthetic data using the SSE approach and found that the synthetic datasets resemble real data. This shows that MoMTSim effectively generates synthetic data that closely matches real mobile money transaction data, validating the accuracy of our model calibration algorithm in simulating complex financial ecosystems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3439012</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8932-5762</orcidid><orcidid>https://orcid.org/0000-0002-3304-4144</orcidid><orcidid>https://orcid.org/0000-0003-4718-4209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.120226-120238
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_86e345aafb184c23872fb4de1f71f742
source IEEE Xplore Open Access Journals
subjects Agent-based models
Algorithms
Calibration
Data models
Datasets
Ecosystems
Fraud
Kolmogorov-Smirnov test
mobile money
model calibration
Multi-agent systems
Multi-agent-based simulation
Multiagent systems
Online banking
Parameter identification
Simulation
Simulation models
Social networking (online)
Statistical methods
Synthetic data
Urban planning
title MoMTSim: A Multi-Agent-Based Simulation Platform Calibrated for Mobile Money Transactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoMTSim:%20A%20Multi-Agent-Based%20Simulation%20Platform%20Calibrated%20for%20Mobile%20Money%20Transactions&rft.jtitle=IEEE%20access&rft.au=Azamuke,%20Denish&rft.date=2024&rft.volume=12&rft.spage=120226&rft.epage=120238&rft.pages=120226-120238&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3439012&rft_dat=%3Cproquest_doaj_%3E3101348532%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-5021689852f32f676ed0b712e659144d3d5cc2bea1327dd3a1b3025f69daf9473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101348532&rft_id=info:pmid/&rft_ieee_id=10623453&rfr_iscdi=true