Loading…

New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers

In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new po...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2019-02, Vol.11 (2), p.264
Main Authors: Kızılateş, Can, Çekim, Bayram, Tuğlu, Naim, Kim, Taekyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43
cites cdi_FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43
container_end_page
container_issue 2
container_start_page 264
container_title Symmetry (Basel)
container_volume 11
creator Kızılateş, Can
Çekim, Bayram
Tuğlu, Naim
Kim, Taekyun
description In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new polynomials are derived. The special cases of our polynomials are given in tables. In the last section, the interesting applications of these polynomials are found.
doi_str_mv 10.3390/sym11020264
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8713d99550754a88aa0a7f21dcb9703c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8713d99550754a88aa0a7f21dcb9703c</doaj_id><sourcerecordid>2550259479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43</originalsourceid><addsrcrecordid>eNpVUU1Lw0AQDaJgqT35BwIeJTrZj2T3KMVqsVQPVcHLstnM2pQkW3cTSv-90YrozGGGx5v3Bl4UnadwRamE67Bv0hQIkIwdRSMCOU2ElOz4z34aTULYwFAcOMtgFL0tcRfPdFPVFYbY2Xi19ojJi_aVLmqMn1y9b11T6TrEU9dvayzjXdWt41es6-Shdbv2H0e3ZbzsmwJ9OItO7ADh5GeOo-fZ7Wp6nywe7-bTm0ViaMa6hNA8S8GAQSA2M1SKoS0ipqawlOvCWM1RiJyy0uiMCLScMQKG00wAMjqO5gfd0umN2vqq0X6vnK7UN-D8u9K-q0yNSuQpLaXkHHLOtBBag84tSUtTyByoGbQuDlpb7z56DJ3auN63w_uKDFeES5bLgXV5YBnvQvBof11TUF9ZqD9Z0E-UZXtY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550259479</pqid></control><display><type>article</type><title>New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers</title><source>Publicly Available Content Database</source><creator>Kızılateş, Can ; Çekim, Bayram ; Tuğlu, Naim ; Kim, Taekyun</creator><creatorcontrib>Kızılateş, Can ; Çekim, Bayram ; Tuğlu, Naim ; Kim, Taekyun</creatorcontrib><description>In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new polynomials are derived. The special cases of our polynomials are given in tables. In the last section, the interesting applications of these polynomials are found.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym11020264</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Fibonacci polynomials ; Functions (mathematics) ; generating functions ; Lucas polynomials ; Mathematical analysis ; Numbers ; Partial differential equations ; Polynomials ; trivariate Fibonacci polynomials ; trivariate Lucas polynomials</subject><ispartof>Symmetry (Basel), 2019-02, Vol.11 (2), p.264</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43</citedby><cites>FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43</cites><orcidid>0000-0002-7277-0034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550259479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550259479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Kızılateş, Can</creatorcontrib><creatorcontrib>Çekim, Bayram</creatorcontrib><creatorcontrib>Tuğlu, Naim</creatorcontrib><creatorcontrib>Kim, Taekyun</creatorcontrib><title>New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers</title><title>Symmetry (Basel)</title><description>In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new polynomials are derived. The special cases of our polynomials are given in tables. In the last section, the interesting applications of these polynomials are found.</description><subject>Fibonacci polynomials</subject><subject>Functions (mathematics)</subject><subject>generating functions</subject><subject>Lucas polynomials</subject><subject>Mathematical analysis</subject><subject>Numbers</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>trivariate Fibonacci polynomials</subject><subject>trivariate Lucas polynomials</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1Lw0AQDaJgqT35BwIeJTrZj2T3KMVqsVQPVcHLstnM2pQkW3cTSv-90YrozGGGx5v3Bl4UnadwRamE67Bv0hQIkIwdRSMCOU2ElOz4z34aTULYwFAcOMtgFL0tcRfPdFPVFYbY2Xi19ojJi_aVLmqMn1y9b11T6TrEU9dvayzjXdWt41es6-Shdbv2H0e3ZbzsmwJ9OItO7ADh5GeOo-fZ7Wp6nywe7-bTm0ViaMa6hNA8S8GAQSA2M1SKoS0ipqawlOvCWM1RiJyy0uiMCLScMQKG00wAMjqO5gfd0umN2vqq0X6vnK7UN-D8u9K-q0yNSuQpLaXkHHLOtBBag84tSUtTyByoGbQuDlpb7z56DJ3auN63w_uKDFeES5bLgXV5YBnvQvBof11TUF9ZqD9Z0E-UZXtY</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Kızılateş, Can</creator><creator>Çekim, Bayram</creator><creator>Tuğlu, Naim</creator><creator>Kim, Taekyun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7277-0034</orcidid></search><sort><creationdate>20190201</creationdate><title>New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers</title><author>Kızılateş, Can ; Çekim, Bayram ; Tuğlu, Naim ; Kim, Taekyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Fibonacci polynomials</topic><topic>Functions (mathematics)</topic><topic>generating functions</topic><topic>Lucas polynomials</topic><topic>Mathematical analysis</topic><topic>Numbers</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>trivariate Fibonacci polynomials</topic><topic>trivariate Lucas polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kızılateş, Can</creatorcontrib><creatorcontrib>Çekim, Bayram</creatorcontrib><creatorcontrib>Tuğlu, Naim</creatorcontrib><creatorcontrib>Kim, Taekyun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kızılateş, Can</au><au>Çekim, Bayram</au><au>Tuğlu, Naim</au><au>Kim, Taekyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers</atitle><jtitle>Symmetry (Basel)</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>264</spage><pages>264-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new polynomials are derived. The special cases of our polynomials are given in tables. In the last section, the interesting applications of these polynomials are found.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym11020264</doi><orcidid>https://orcid.org/0000-0002-7277-0034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2019-02, Vol.11 (2), p.264
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8713d99550754a88aa0a7f21dcb9703c
source Publicly Available Content Database
subjects Fibonacci polynomials
Functions (mathematics)
generating functions
Lucas polynomials
Mathematical analysis
Numbers
Partial differential equations
Polynomials
trivariate Fibonacci polynomials
trivariate Lucas polynomials
title New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Families%20of%20Three-Variable%20Polynomials%20Coupled%20with%20Well-Known%20Polynomials%20and%20Numbers&rft.jtitle=Symmetry%20(Basel)&rft.au=K%C4%B1z%C4%B1late%C5%9F,%20Can&rft.date=2019-02-01&rft.volume=11&rft.issue=2&rft.spage=264&rft.pages=264-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym11020264&rft_dat=%3Cproquest_doaj_%3E2550259479%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550259479&rft_id=info:pmid/&rfr_iscdi=true