Loading…
New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers
In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new po...
Saved in:
Published in: | Symmetry (Basel) 2019-02, Vol.11 (2), p.264 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43 |
container_end_page | |
container_issue | 2 |
container_start_page | 264 |
container_title | Symmetry (Basel) |
container_volume | 11 |
creator | Kızılateş, Can Çekim, Bayram Tuğlu, Naim Kim, Taekyun |
description | In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new polynomials are derived. The special cases of our polynomials are given in tables. In the last section, the interesting applications of these polynomials are found. |
doi_str_mv | 10.3390/sym11020264 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8713d99550754a88aa0a7f21dcb9703c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8713d99550754a88aa0a7f21dcb9703c</doaj_id><sourcerecordid>2550259479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43</originalsourceid><addsrcrecordid>eNpVUU1Lw0AQDaJgqT35BwIeJTrZj2T3KMVqsVQPVcHLstnM2pQkW3cTSv-90YrozGGGx5v3Bl4UnadwRamE67Bv0hQIkIwdRSMCOU2ElOz4z34aTULYwFAcOMtgFL0tcRfPdFPVFYbY2Xi19ojJi_aVLmqMn1y9b11T6TrEU9dvayzjXdWt41es6-Shdbv2H0e3ZbzsmwJ9OItO7ADh5GeOo-fZ7Wp6nywe7-bTm0ViaMa6hNA8S8GAQSA2M1SKoS0ipqawlOvCWM1RiJyy0uiMCLScMQKG00wAMjqO5gfd0umN2vqq0X6vnK7UN-D8u9K-q0yNSuQpLaXkHHLOtBBag84tSUtTyByoGbQuDlpb7z56DJ3auN63w_uKDFeES5bLgXV5YBnvQvBof11TUF9ZqD9Z0E-UZXtY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550259479</pqid></control><display><type>article</type><title>New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers</title><source>Publicly Available Content Database</source><creator>Kızılateş, Can ; Çekim, Bayram ; Tuğlu, Naim ; Kim, Taekyun</creator><creatorcontrib>Kızılateş, Can ; Çekim, Bayram ; Tuğlu, Naim ; Kim, Taekyun</creatorcontrib><description>In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new polynomials are derived. The special cases of our polynomials are given in tables. In the last section, the interesting applications of these polynomials are found.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym11020264</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Fibonacci polynomials ; Functions (mathematics) ; generating functions ; Lucas polynomials ; Mathematical analysis ; Numbers ; Partial differential equations ; Polynomials ; trivariate Fibonacci polynomials ; trivariate Lucas polynomials</subject><ispartof>Symmetry (Basel), 2019-02, Vol.11 (2), p.264</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43</citedby><cites>FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43</cites><orcidid>0000-0002-7277-0034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550259479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550259479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Kızılateş, Can</creatorcontrib><creatorcontrib>Çekim, Bayram</creatorcontrib><creatorcontrib>Tuğlu, Naim</creatorcontrib><creatorcontrib>Kim, Taekyun</creatorcontrib><title>New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers</title><title>Symmetry (Basel)</title><description>In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new polynomials are derived. The special cases of our polynomials are given in tables. In the last section, the interesting applications of these polynomials are found.</description><subject>Fibonacci polynomials</subject><subject>Functions (mathematics)</subject><subject>generating functions</subject><subject>Lucas polynomials</subject><subject>Mathematical analysis</subject><subject>Numbers</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>trivariate Fibonacci polynomials</subject><subject>trivariate Lucas polynomials</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1Lw0AQDaJgqT35BwIeJTrZj2T3KMVqsVQPVcHLstnM2pQkW3cTSv-90YrozGGGx5v3Bl4UnadwRamE67Bv0hQIkIwdRSMCOU2ElOz4z34aTULYwFAcOMtgFL0tcRfPdFPVFYbY2Xi19ojJi_aVLmqMn1y9b11T6TrEU9dvayzjXdWt41es6-Shdbv2H0e3ZbzsmwJ9OItO7ADh5GeOo-fZ7Wp6nywe7-bTm0ViaMa6hNA8S8GAQSA2M1SKoS0ipqawlOvCWM1RiJyy0uiMCLScMQKG00wAMjqO5gfd0umN2vqq0X6vnK7UN-D8u9K-q0yNSuQpLaXkHHLOtBBag84tSUtTyByoGbQuDlpb7z56DJ3auN63w_uKDFeES5bLgXV5YBnvQvBof11TUF9ZqD9Z0E-UZXtY</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Kızılateş, Can</creator><creator>Çekim, Bayram</creator><creator>Tuğlu, Naim</creator><creator>Kim, Taekyun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7277-0034</orcidid></search><sort><creationdate>20190201</creationdate><title>New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers</title><author>Kızılateş, Can ; Çekim, Bayram ; Tuğlu, Naim ; Kim, Taekyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Fibonacci polynomials</topic><topic>Functions (mathematics)</topic><topic>generating functions</topic><topic>Lucas polynomials</topic><topic>Mathematical analysis</topic><topic>Numbers</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>trivariate Fibonacci polynomials</topic><topic>trivariate Lucas polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kızılateş, Can</creatorcontrib><creatorcontrib>Çekim, Bayram</creatorcontrib><creatorcontrib>Tuğlu, Naim</creatorcontrib><creatorcontrib>Kim, Taekyun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kızılateş, Can</au><au>Çekim, Bayram</au><au>Tuğlu, Naim</au><au>Kim, Taekyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers</atitle><jtitle>Symmetry (Basel)</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>264</spage><pages>264-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>In this paper, firstly the definitions of the families of three-variable polynomials with the new generalized polynomials related to the generating functions of the famous polynomials and numbers in literature are given. Then, the explicit representation and partial differential equations for new polynomials are derived. The special cases of our polynomials are given in tables. In the last section, the interesting applications of these polynomials are found.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym11020264</doi><orcidid>https://orcid.org/0000-0002-7277-0034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2019-02, Vol.11 (2), p.264 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8713d99550754a88aa0a7f21dcb9703c |
source | Publicly Available Content Database |
subjects | Fibonacci polynomials Functions (mathematics) generating functions Lucas polynomials Mathematical analysis Numbers Partial differential equations Polynomials trivariate Fibonacci polynomials trivariate Lucas polynomials |
title | New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Families%20of%20Three-Variable%20Polynomials%20Coupled%20with%20Well-Known%20Polynomials%20and%20Numbers&rft.jtitle=Symmetry%20(Basel)&rft.au=K%C4%B1z%C4%B1late%C5%9F,%20Can&rft.date=2019-02-01&rft.volume=11&rft.issue=2&rft.spage=264&rft.pages=264-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym11020264&rft_dat=%3Cproquest_doaj_%3E2550259479%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-237610c0ce02f6c398989feee1cbf35abcfa5e88734dca628ef54420c53680e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550259479&rft_id=info:pmid/&rfr_iscdi=true |