Loading…

Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem

Methanogenesis, a biological process mediated by complex microbial communities, has attracted great attention due to its contribution to global warming and potential in biotechnological applications. The current study unveiled the core microbial methanogenic metabolisms in anaerobic vessel ecosystem...

Full description

Saved in:
Bibliographic Details
Published in:Microbiome 2020-02, Vol.8 (1), p.22-14, Article 22
Main Authors: Zhu, Xinyu, Campanaro, Stefano, Treu, Laura, Seshadri, Rekha, Ivanova, Natalia, Kougias, Panagiotis G, Kyrpides, Nikos, Angelidaki, Irini
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c586t-8ff026f4eabbbf21798a9c5db4052fca1357bf03efec3d50adf934f75e80c6f73
cites cdi_FETCH-LOGICAL-c586t-8ff026f4eabbbf21798a9c5db4052fca1357bf03efec3d50adf934f75e80c6f73
container_end_page 14
container_issue 1
container_start_page 22
container_title Microbiome
container_volume 8
creator Zhu, Xinyu
Campanaro, Stefano
Treu, Laura
Seshadri, Rekha
Ivanova, Natalia
Kougias, Panagiotis G
Kyrpides, Nikos
Angelidaki, Irini
description Methanogenesis, a biological process mediated by complex microbial communities, has attracted great attention due to its contribution to global warming and potential in biotechnological applications. The current study unveiled the core microbial methanogenic metabolisms in anaerobic vessel ecosystems by applying combined genome-centric metagenomics and metatranscriptomics. Here, we demonstrate that an enriched natural system, fueled only with acetate, could support a bacteria-dominated microbiota employing a multi-trophic methanogenic process. Moreover, significant changes, in terms of microbial structure and function, were recorded after the system was supplemented with additional H . Methanosarcina thermophila, the predominant methanogen prior to H addition, simultaneously performed acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis. The methanogenic pattern changed after the addition of H , which immediately stimulated Methanomicrobia-activity and was followed by a slow enrichment of Methanobacteria members. Interestingly, the essential genes involved in the Wood-Ljungdahl pathway were not expressed in bacterial members. The high expression of a glycine cleavage system indicated the activation of alternative metabolic pathways for acetate metabolism, which were reconstructed in the most abundant bacterial genomes. Moreover, as evidenced by predicted auxotrophies, we propose that specific microbes of the community were forming symbiotic relationships, thus reducing the biosynthetic burden of individual members. These results provide new information that will facilitate future microbial ecology studies of interspecies competition and symbiosis in methanogenic niches. Video abstract.
doi_str_mv 10.1186/s40168-019-0780-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_87155a25f0e34c868f61e8375de9de7a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_87155a25f0e34c868f61e8375de9de7a</doaj_id><sourcerecordid>2357209578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-8ff026f4eabbbf21798a9c5db4052fca1357bf03efec3d50adf934f75e80c6f73</originalsourceid><addsrcrecordid>eNpVkk2PFCEQhjtG427W_QFeTEfPrQUNDVxMzMaPTdZ40TOhoehhMg0j9JjMv5e2180uIYFQVQ_Fy9s0rwm8J0QOHwoDMsgOiOpASOjUs-aSAlMdHYh8_mh_0VyXsoc6FGGCyZfNRU9hIJSTy2b-josZ0yHY1uERo8NoA5Z2Sn8wx3YONqcxmENbznHJ6bhbg-6UQ5zaGZediWnCiCWUNsTWrNPgWlJ5YcKyhBRbtKmcy4Lzq-aFN4eC1_frVfPry-efN9-6ux9fb28-3XWWy2HppPdAB8_QjOPoKRFKGmW5Gxlw6q0hPRejhx492t5xMM6rnnnBUYIdvOivmtuN65LZ62MOs8lnnUzQ_w5SnrTJS7AH1FIQzg3lHrBnVg7SDwRlL7hD5VCYyvq4sY6ncUZnsepgDk-gTyMx7HSVTwugjHNWAW83QKpq6GLDgnZnU4xoF00UMBCkJr27vyWn36eqm96nU45VJE3raykoLmTNIltW_ZVSMvqHNgjo1RV6c4WurtCrK7SqNW8e9_9Q8d8D_V908LXu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357209578</pqid></control><display><type>article</type><title>Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Zhu, Xinyu ; Campanaro, Stefano ; Treu, Laura ; Seshadri, Rekha ; Ivanova, Natalia ; Kougias, Panagiotis G ; Kyrpides, Nikos ; Angelidaki, Irini</creator><creatorcontrib>Zhu, Xinyu ; Campanaro, Stefano ; Treu, Laura ; Seshadri, Rekha ; Ivanova, Natalia ; Kougias, Panagiotis G ; Kyrpides, Nikos ; Angelidaki, Irini ; USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</creatorcontrib><description>Methanogenesis, a biological process mediated by complex microbial communities, has attracted great attention due to its contribution to global warming and potential in biotechnological applications. The current study unveiled the core microbial methanogenic metabolisms in anaerobic vessel ecosystems by applying combined genome-centric metagenomics and metatranscriptomics. Here, we demonstrate that an enriched natural system, fueled only with acetate, could support a bacteria-dominated microbiota employing a multi-trophic methanogenic process. Moreover, significant changes, in terms of microbial structure and function, were recorded after the system was supplemented with additional H . Methanosarcina thermophila, the predominant methanogen prior to H addition, simultaneously performed acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis. The methanogenic pattern changed after the addition of H , which immediately stimulated Methanomicrobia-activity and was followed by a slow enrichment of Methanobacteria members. Interestingly, the essential genes involved in the Wood-Ljungdahl pathway were not expressed in bacterial members. The high expression of a glycine cleavage system indicated the activation of alternative metabolic pathways for acetate metabolism, which were reconstructed in the most abundant bacterial genomes. Moreover, as evidenced by predicted auxotrophies, we propose that specific microbes of the community were forming symbiotic relationships, thus reducing the biosynthetic burden of individual members. These results provide new information that will facilitate future microbial ecology studies of interspecies competition and symbiosis in methanogenic niches. Video abstract.</description><identifier>ISSN: 2049-2618</identifier><identifier>EISSN: 2049-2618</identifier><identifier>DOI: 10.1186/s40168-019-0780-9</identifier><identifier>PMID: 32061251</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Acetates - metabolism ; Acetic acid ; Anaerobic digestion ; Anaerobic microorganisms ; Anaerobiosis ; Auxotrophies ; Bacteria - classification ; Bacteria - metabolism ; BASIC BIOLOGICAL SCIENCES ; Biogas ; Bioreactors ; Carbon ; Chemoautotrophic Growth ; Deoxyribonucleic acid ; DNA ; Ecosystem ; Ecosystems ; Gene expression ; Gene Expression Profiling ; Genomes ; Genomics ; Global warming ; Glycine ; glycine cleavage ; Hydrogen - metabolism ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolic rate ; Metabolism ; Metagenomics ; Metatranscriptomics ; Methane - biosynthesis ; Methanogenesis ; methanogenic pathways ; Methanosarcina - metabolism ; Microbial community ; Microbiology ; Microbiota ; Niches ; Reactors ; Structure-function relationships ; Symbiosis ; Syntrophic acetate oxidation</subject><ispartof>Microbiome, 2020-02, Vol.8 (1), p.22-14, Article 22</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-8ff026f4eabbbf21798a9c5db4052fca1357bf03efec3d50adf934f75e80c6f73</citedby><cites>FETCH-LOGICAL-c586t-8ff026f4eabbbf21798a9c5db4052fca1357bf03efec3d50adf934f75e80c6f73</cites><orcidid>0000-0003-4416-2135 ; 0000000344162135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024554/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2357209578?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32061251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1904071$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xinyu</creatorcontrib><creatorcontrib>Campanaro, Stefano</creatorcontrib><creatorcontrib>Treu, Laura</creatorcontrib><creatorcontrib>Seshadri, Rekha</creatorcontrib><creatorcontrib>Ivanova, Natalia</creatorcontrib><creatorcontrib>Kougias, Panagiotis G</creatorcontrib><creatorcontrib>Kyrpides, Nikos</creatorcontrib><creatorcontrib>Angelidaki, Irini</creatorcontrib><creatorcontrib>USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</creatorcontrib><title>Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem</title><title>Microbiome</title><addtitle>Microbiome</addtitle><description>Methanogenesis, a biological process mediated by complex microbial communities, has attracted great attention due to its contribution to global warming and potential in biotechnological applications. The current study unveiled the core microbial methanogenic metabolisms in anaerobic vessel ecosystems by applying combined genome-centric metagenomics and metatranscriptomics. Here, we demonstrate that an enriched natural system, fueled only with acetate, could support a bacteria-dominated microbiota employing a multi-trophic methanogenic process. Moreover, significant changes, in terms of microbial structure and function, were recorded after the system was supplemented with additional H . Methanosarcina thermophila, the predominant methanogen prior to H addition, simultaneously performed acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis. The methanogenic pattern changed after the addition of H , which immediately stimulated Methanomicrobia-activity and was followed by a slow enrichment of Methanobacteria members. Interestingly, the essential genes involved in the Wood-Ljungdahl pathway were not expressed in bacterial members. The high expression of a glycine cleavage system indicated the activation of alternative metabolic pathways for acetate metabolism, which were reconstructed in the most abundant bacterial genomes. Moreover, as evidenced by predicted auxotrophies, we propose that specific microbes of the community were forming symbiotic relationships, thus reducing the biosynthetic burden of individual members. These results provide new information that will facilitate future microbial ecology studies of interspecies competition and symbiosis in methanogenic niches. Video abstract.</description><subject>Acetates - metabolism</subject><subject>Acetic acid</subject><subject>Anaerobic digestion</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobiosis</subject><subject>Auxotrophies</subject><subject>Bacteria - classification</subject><subject>Bacteria - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biogas</subject><subject>Bioreactors</subject><subject>Carbon</subject><subject>Chemoautotrophic Growth</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Global warming</subject><subject>Glycine</subject><subject>glycine cleavage</subject><subject>Hydrogen - metabolism</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Metagenomics</subject><subject>Metatranscriptomics</subject><subject>Methane - biosynthesis</subject><subject>Methanogenesis</subject><subject>methanogenic pathways</subject><subject>Methanosarcina - metabolism</subject><subject>Microbial community</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Niches</subject><subject>Reactors</subject><subject>Structure-function relationships</subject><subject>Symbiosis</subject><subject>Syntrophic acetate oxidation</subject><issn>2049-2618</issn><issn>2049-2618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkk2PFCEQhjtG427W_QFeTEfPrQUNDVxMzMaPTdZ40TOhoehhMg0j9JjMv5e2180uIYFQVQ_Fy9s0rwm8J0QOHwoDMsgOiOpASOjUs-aSAlMdHYh8_mh_0VyXsoc6FGGCyZfNRU9hIJSTy2b-josZ0yHY1uERo8NoA5Z2Sn8wx3YONqcxmENbznHJ6bhbg-6UQ5zaGZediWnCiCWUNsTWrNPgWlJ5YcKyhBRbtKmcy4Lzq-aFN4eC1_frVfPry-efN9-6ux9fb28-3XWWy2HppPdAB8_QjOPoKRFKGmW5Gxlw6q0hPRejhx492t5xMM6rnnnBUYIdvOivmtuN65LZ62MOs8lnnUzQ_w5SnrTJS7AH1FIQzg3lHrBnVg7SDwRlL7hD5VCYyvq4sY6ncUZnsepgDk-gTyMx7HSVTwugjHNWAW83QKpq6GLDgnZnU4xoF00UMBCkJr27vyWn36eqm96nU45VJE3raykoLmTNIltW_ZVSMvqHNgjo1RV6c4WurtCrK7SqNW8e9_9Q8d8D_V908LXu</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Zhu, Xinyu</creator><creator>Campanaro, Stefano</creator><creator>Treu, Laura</creator><creator>Seshadri, Rekha</creator><creator>Ivanova, Natalia</creator><creator>Kougias, Panagiotis G</creator><creator>Kyrpides, Nikos</creator><creator>Angelidaki, Irini</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4416-2135</orcidid><orcidid>https://orcid.org/0000000344162135</orcidid></search><sort><creationdate>20200215</creationdate><title>Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem</title><author>Zhu, Xinyu ; Campanaro, Stefano ; Treu, Laura ; Seshadri, Rekha ; Ivanova, Natalia ; Kougias, Panagiotis G ; Kyrpides, Nikos ; Angelidaki, Irini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-8ff026f4eabbbf21798a9c5db4052fca1357bf03efec3d50adf934f75e80c6f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetates - metabolism</topic><topic>Acetic acid</topic><topic>Anaerobic digestion</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobiosis</topic><topic>Auxotrophies</topic><topic>Bacteria - classification</topic><topic>Bacteria - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biogas</topic><topic>Bioreactors</topic><topic>Carbon</topic><topic>Chemoautotrophic Growth</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Global warming</topic><topic>Glycine</topic><topic>glycine cleavage</topic><topic>Hydrogen - metabolism</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Metagenomics</topic><topic>Metatranscriptomics</topic><topic>Methane - biosynthesis</topic><topic>Methanogenesis</topic><topic>methanogenic pathways</topic><topic>Methanosarcina - metabolism</topic><topic>Microbial community</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Niches</topic><topic>Reactors</topic><topic>Structure-function relationships</topic><topic>Symbiosis</topic><topic>Syntrophic acetate oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xinyu</creatorcontrib><creatorcontrib>Campanaro, Stefano</creatorcontrib><creatorcontrib>Treu, Laura</creatorcontrib><creatorcontrib>Seshadri, Rekha</creatorcontrib><creatorcontrib>Ivanova, Natalia</creatorcontrib><creatorcontrib>Kougias, Panagiotis G</creatorcontrib><creatorcontrib>Kyrpides, Nikos</creatorcontrib><creatorcontrib>Angelidaki, Irini</creatorcontrib><creatorcontrib>USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microbiome</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xinyu</au><au>Campanaro, Stefano</au><au>Treu, Laura</au><au>Seshadri, Rekha</au><au>Ivanova, Natalia</au><au>Kougias, Panagiotis G</au><au>Kyrpides, Nikos</au><au>Angelidaki, Irini</au><aucorp>USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem</atitle><jtitle>Microbiome</jtitle><addtitle>Microbiome</addtitle><date>2020-02-15</date><risdate>2020</risdate><volume>8</volume><issue>1</issue><spage>22</spage><epage>14</epage><pages>22-14</pages><artnum>22</artnum><issn>2049-2618</issn><eissn>2049-2618</eissn><abstract>Methanogenesis, a biological process mediated by complex microbial communities, has attracted great attention due to its contribution to global warming and potential in biotechnological applications. The current study unveiled the core microbial methanogenic metabolisms in anaerobic vessel ecosystems by applying combined genome-centric metagenomics and metatranscriptomics. Here, we demonstrate that an enriched natural system, fueled only with acetate, could support a bacteria-dominated microbiota employing a multi-trophic methanogenic process. Moreover, significant changes, in terms of microbial structure and function, were recorded after the system was supplemented with additional H . Methanosarcina thermophila, the predominant methanogen prior to H addition, simultaneously performed acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis. The methanogenic pattern changed after the addition of H , which immediately stimulated Methanomicrobia-activity and was followed by a slow enrichment of Methanobacteria members. Interestingly, the essential genes involved in the Wood-Ljungdahl pathway were not expressed in bacterial members. The high expression of a glycine cleavage system indicated the activation of alternative metabolic pathways for acetate metabolism, which were reconstructed in the most abundant bacterial genomes. Moreover, as evidenced by predicted auxotrophies, we propose that specific microbes of the community were forming symbiotic relationships, thus reducing the biosynthetic burden of individual members. These results provide new information that will facilitate future microbial ecology studies of interspecies competition and symbiosis in methanogenic niches. Video abstract.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>32061251</pmid><doi>10.1186/s40168-019-0780-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4416-2135</orcidid><orcidid>https://orcid.org/0000000344162135</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2049-2618
ispartof Microbiome, 2020-02, Vol.8 (1), p.22-14, Article 22
issn 2049-2618
2049-2618
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_87155a25f0e34c868f61e8375de9de7a
source Open Access: PubMed Central; Publicly Available Content Database
subjects Acetates - metabolism
Acetic acid
Anaerobic digestion
Anaerobic microorganisms
Anaerobiosis
Auxotrophies
Bacteria - classification
Bacteria - metabolism
BASIC BIOLOGICAL SCIENCES
Biogas
Bioreactors
Carbon
Chemoautotrophic Growth
Deoxyribonucleic acid
DNA
Ecosystem
Ecosystems
Gene expression
Gene Expression Profiling
Genomes
Genomics
Global warming
Glycine
glycine cleavage
Hydrogen - metabolism
Metabolic Networks and Pathways
Metabolic pathways
Metabolic rate
Metabolism
Metagenomics
Metatranscriptomics
Methane - biosynthesis
Methanogenesis
methanogenic pathways
Methanosarcina - metabolism
Microbial community
Microbiology
Microbiota
Niches
Reactors
Structure-function relationships
Symbiosis
Syntrophic acetate oxidation
title Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20dependencies%20govern%20microbial%20syntrophies%20during%20methanogenesis%20in%20an%20anaerobic%20digestion%20ecosystem&rft.jtitle=Microbiome&rft.au=Zhu,%20Xinyu&rft.aucorp=USDOE%20Joint%20Genome%20Institute%20(JGI),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-02-15&rft.volume=8&rft.issue=1&rft.spage=22&rft.epage=14&rft.pages=22-14&rft.artnum=22&rft.issn=2049-2618&rft.eissn=2049-2618&rft_id=info:doi/10.1186/s40168-019-0780-9&rft_dat=%3Cproquest_doaj_%3E2357209578%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c586t-8ff026f4eabbbf21798a9c5db4052fca1357bf03efec3d50adf934f75e80c6f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357209578&rft_id=info:pmid/32061251&rfr_iscdi=true