Loading…
Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions
In this paper, the third Hankel determinant for the class N of functions convex in one direction is estimated. An analogous problem is solved for a subclass of N consisting of functions with real coefficients. Additionally, this determinant for odd functions in N is estimated. Moreover, similar resu...
Saved in:
Published in: | Symmetry (Basel) 2022-05, Vol.14 (5), p.885 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2795-dc2284b7f1d4d0a2581c9467dc384f2209942d63a3e4d422a419f1418b254d5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2795-dc2284b7f1d4d0a2581c9467dc384f2209942d63a3e4d422a419f1418b254d5b3 |
container_end_page | |
container_issue | 5 |
container_start_page | 885 |
container_title | Symmetry (Basel) |
container_volume | 14 |
creator | Zaprawa, Paweł Tra̧bka-Wiȩcław, Katarzyna |
description | In this paper, the third Hankel determinant for the class N of functions convex in one direction is estimated. An analogous problem is solved for a subclass of N consisting of functions with real coefficients. Additionally, this determinant for odd functions in N is estimated. Moreover, similar results are obtained in the relative class M consisting of functions zf′(z), where f∈N. The majority of bounds is sharp. |
doi_str_mv | 10.3390/sym14050885 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_871a3e34818b400dbbf69ef964a903e2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_871a3e34818b400dbbf69ef964a903e2</doaj_id><sourcerecordid>2670163419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2795-dc2284b7f1d4d0a2581c9467dc384f2209942d63a3e4d422a419f1418b254d5b3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEhX0xAtY4ogC_ktiHyFQWlSJS3u2nNimKakd7ATRt8dQhLqXXa1mvx0NAFcY3VIq0F3c7zBDOeI8PwETgkqacSHY6dF8DqYxblGqHOWsQBPwsu57E-CDH52O0Fs4bAxcbdqg4Vy5d9PBRzOYsGudcgO0PsCq89Fkg88q7z7NF5yNrhla7-IlOLOqi2b61y_Aeva0qubZ8vV5Ud0vs4aUIs90QwhndWmxZhopknPcCFaUuqGcWUJQ8kl0QRU1TDNCFMPCYoZ5TXKm85pegMWBq73ayj60OxX20qtW_i58eJMqDG3TGclLnDCU8XTNENJ1bQthrCiYEogakljXB1Yf_Mdo4iC3fgwu2ZekKBEuaPqeVDcHVRN8jMHY_68YyZ_s5VH29BurVXQj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670163419</pqid></control><display><type>article</type><title>Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions</title><source>Publicly Available Content Database</source><creator>Zaprawa, Paweł ; Tra̧bka-Wiȩcław, Katarzyna</creator><creatorcontrib>Zaprawa, Paweł ; Tra̧bka-Wiȩcław, Katarzyna</creatorcontrib><description>In this paper, the third Hankel determinant for the class N of functions convex in one direction is estimated. An analogous problem is solved for a subclass of N consisting of functions with real coefficients. Additionally, this determinant for odd functions in N is estimated. Moreover, similar results are obtained in the relative class M consisting of functions zf′(z), where f∈N. The majority of bounds is sharp.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14050885</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>close-to-convex functions ; coefficients of analytic functions ; Convex analysis ; Inequality ; Schwarz functions ; third Hankel determinant ; Upper bounds</subject><ispartof>Symmetry (Basel), 2022-05, Vol.14 (5), p.885</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2795-dc2284b7f1d4d0a2581c9467dc384f2209942d63a3e4d422a419f1418b254d5b3</citedby><cites>FETCH-LOGICAL-c2795-dc2284b7f1d4d0a2581c9467dc384f2209942d63a3e4d422a419f1418b254d5b3</cites><orcidid>0000-0002-1693-5367 ; 0000-0002-7279-9582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670163419/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670163419?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Zaprawa, Paweł</creatorcontrib><creatorcontrib>Tra̧bka-Wiȩcław, Katarzyna</creatorcontrib><title>Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions</title><title>Symmetry (Basel)</title><description>In this paper, the third Hankel determinant for the class N of functions convex in one direction is estimated. An analogous problem is solved for a subclass of N consisting of functions with real coefficients. Additionally, this determinant for odd functions in N is estimated. Moreover, similar results are obtained in the relative class M consisting of functions zf′(z), where f∈N. The majority of bounds is sharp.</description><subject>close-to-convex functions</subject><subject>coefficients of analytic functions</subject><subject>Convex analysis</subject><subject>Inequality</subject><subject>Schwarz functions</subject><subject>third Hankel determinant</subject><subject>Upper bounds</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwzAQhC0EEhX0xAtY4ogC_ktiHyFQWlSJS3u2nNimKakd7ATRt8dQhLqXXa1mvx0NAFcY3VIq0F3c7zBDOeI8PwETgkqacSHY6dF8DqYxblGqHOWsQBPwsu57E-CDH52O0Fs4bAxcbdqg4Vy5d9PBRzOYsGudcgO0PsCq89Fkg88q7z7NF5yNrhla7-IlOLOqi2b61y_Aeva0qubZ8vV5Ud0vs4aUIs90QwhndWmxZhopknPcCFaUuqGcWUJQ8kl0QRU1TDNCFMPCYoZ5TXKm85pegMWBq73ayj60OxX20qtW_i58eJMqDG3TGclLnDCU8XTNENJ1bQthrCiYEogakljXB1Yf_Mdo4iC3fgwu2ZekKBEuaPqeVDcHVRN8jMHY_68YyZ_s5VH29BurVXQj</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zaprawa, Paweł</creator><creator>Tra̧bka-Wiȩcław, Katarzyna</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1693-5367</orcidid><orcidid>https://orcid.org/0000-0002-7279-9582</orcidid></search><sort><creationdate>20220501</creationdate><title>Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions</title><author>Zaprawa, Paweł ; Tra̧bka-Wiȩcław, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2795-dc2284b7f1d4d0a2581c9467dc384f2209942d63a3e4d422a419f1418b254d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>close-to-convex functions</topic><topic>coefficients of analytic functions</topic><topic>Convex analysis</topic><topic>Inequality</topic><topic>Schwarz functions</topic><topic>third Hankel determinant</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaprawa, Paweł</creatorcontrib><creatorcontrib>Tra̧bka-Wiȩcław, Katarzyna</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaprawa, Paweł</au><au>Tra̧bka-Wiȩcław, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>885</spage><pages>885-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>In this paper, the third Hankel determinant for the class N of functions convex in one direction is estimated. An analogous problem is solved for a subclass of N consisting of functions with real coefficients. Additionally, this determinant for odd functions in N is estimated. Moreover, similar results are obtained in the relative class M consisting of functions zf′(z), where f∈N. The majority of bounds is sharp.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14050885</doi><orcidid>https://orcid.org/0000-0002-1693-5367</orcidid><orcidid>https://orcid.org/0000-0002-7279-9582</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2022-05, Vol.14 (5), p.885 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_871a3e34818b400dbbf69ef964a903e2 |
source | Publicly Available Content Database |
subjects | close-to-convex functions coefficients of analytic functions Convex analysis Inequality Schwarz functions third Hankel determinant Upper bounds |
title | Upper Bounds of the Third Hankel Determinant for Close-to-Convex Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20of%20the%20Third%20Hankel%20Determinant%20for%20Close-to-Convex%20Functions&rft.jtitle=Symmetry%20(Basel)&rft.au=Zaprawa,%20Pawe%C5%82&rft.date=2022-05-01&rft.volume=14&rft.issue=5&rft.spage=885&rft.pages=885-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14050885&rft_dat=%3Cproquest_doaj_%3E2670163419%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2795-dc2284b7f1d4d0a2581c9467dc384f2209942d63a3e4d422a419f1418b254d5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670163419&rft_id=info:pmid/&rfr_iscdi=true |