Loading…
Effective SARS-CoV-2 replication of monolayers of intestinal epithelial cells differentiated from human induced pluripotent stem cells
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe acute respiratory symptoms in humans. Controlling the coronavirus disease pandemic is a worldwide priority. The number of SARS-CoV-2 studies has dramatically increased, and the requirement for analytical tools is higher than...
Saved in:
Published in: | Scientific reports 2023-07, Vol.13 (1), p.11610-11610, Article 11610 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe acute respiratory symptoms in humans. Controlling the coronavirus disease pandemic is a worldwide priority. The number of SARS-CoV-2 studies has dramatically increased, and the requirement for analytical tools is higher than ever. Here, we propose monolayered-intestinal epithelial cells (IECs) derived from human induced pluripotent stem cells (iPSCs) instead of three-dimensional cultured intestinal organoids as a suitable tool to study SARS-CoV-2 infection. Differentiated IEC monolayers express high levels of angiotensin-converting enzyme 2 and transmembrane protease serine 2 (TMPRSS2), host factors essential for SARS-CoV-2 infection. SARS-CoV-2 efficiently grows in IEC monolayers. Using this propagation system, we confirm that TMPRSS2 inhibition blocked SARS-CoV-2 infection in IECs. Hence, our iPSC-derived IEC monolayers are suitable for SARS-CoV-2 research under physiologically relevant conditions. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-38548-1 |