Loading…
Arthropod and oligochaete assemblages from grasslands of the southern Kenai Peninsula, Alaska
By the end of this century, the potential climate-biome of the southern Kenai Peninsula is forecasted to change from transitional boreal forest to prairie and grasslands, a scenario that may already be playing out in the Caribou Hills region. Here, spruce (Picea × lutzii Little [ × ]) forests were h...
Saved in:
Published in: | Biodiversity data journal 2017-01, Vol.5 (5), p.e10792-26 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By the end of this century, the potential climate-biome of the southern Kenai Peninsula is forecasted to change from transitional boreal forest to prairie and grasslands, a scenario that may already be playing out in the Caribou Hills region. Here, spruce (Picea × lutzii Little [
×
]) forests were heavily thinned by an outbreak of the spruce bark beetle (
(Kirby, 1837)) and replaced by the native but invasive grass species,
(Michx.) P. Beauv. As part of a project designed to delimit and characterize potentially expanding grasslands in this region, we sought to characterize the arthropod and earthworm communities of these grasslands. We also used this sampling effort as a trial of applying high-throughput sequencing metabarcoding methods to a real-world inventory of terrestrial arthropods.
We documented 131 occurrences of 67 native arthropod species at ten sites, characterizing the arthropod fauna of these grasslands as being dominated by Hemiptera (60% of total reads) and Diptera (38% of total reads). We found a single exotic earthworm species,
(Savigny, 1826), at 30% of sites and one unidentified enchytraeid at a single site. The utility of high-throughput sequencing metabarcoding as a tool for bioassessment of terrestrial arthropod assemblages was confirmed. |
---|---|
ISSN: | 1314-2828 1314-2836 1314-2828 |
DOI: | 10.3897/BDJ.5.e10792 |