Loading…
Quantitative Estimation of Pipeline Slope Disaster Risk in China
China’s economic development is closely related to oil and gas resources, and the country is investing heavily in pipeline construction. Slope geological hazards seriously affect the long-term safe operation of buried pipelines, usually causing pipeline leakage, property and environmental losses, an...
Saved in:
Published in: | International journal of disaster risk science 2023-04, Vol.14 (2), p.298-312 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | China’s economic development is closely related to oil and gas resources, and the country is investing heavily in pipeline construction. Slope geological hazards seriously affect the long-term safe operation of buried pipelines, usually causing pipeline leakage, property and environmental losses, and adverse social impacts. To ensure the safety of pipelines and reduce the probability of pipeline disasters, it is necessary to predict and quantitatively evaluate slope hazards. While there has been much research focus in recent years on the evaluation of pipeline slope disasters and the stress calculation of pipelines under hazards, existing methods only provide information on the occurrence probability of slope events, not whether a slope disaster will lead to pipeline damage. Taking the 2015 Xinzhan landslide in Guizhou Province, China, as an example, this study used discrete elements to simulate landslide events and determine the risk level and scope for pipeline damage, and then established a pipe-soil coupling model to quantitatively evaluate the impact of landslide hazards for pipelines in medium- and high-risk areas. The results provide a reference for future pipeline disaster prevention and control. |
---|---|
ISSN: | 2095-0055 2192-6395 |
DOI: | 10.1007/s13753-023-00462-5 |