Loading…

Chiral sound waves in strained Weyl semimetals

We show that a strained wire of a Weyl semimetal supports a new type of gapless excitation, the chiral sound wave (CSW). It is a longitudinal charge density wave analog to the chiral magnetic wave predicted in the quark-gluon plasma but driven by an elastic axial pseudo-magnetic field. It involves t...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research 2019-12, Vol.1 (3), p.032040, Article 032040
Main Authors: Chernodub, M. N., Vozmediano, María A. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-e727f9be6a117aeb9d4c30e3a80d4c4a0571ed19eafa6cf054aa34bee196855b3
cites cdi_FETCH-LOGICAL-c409t-e727f9be6a117aeb9d4c30e3a80d4c4a0571ed19eafa6cf054aa34bee196855b3
container_end_page
container_issue 3
container_start_page 032040
container_title Physical review research
container_volume 1
creator Chernodub, M. N.
Vozmediano, María A. H.
description We show that a strained wire of a Weyl semimetal supports a new type of gapless excitation, the chiral sound wave (CSW). It is a longitudinal charge density wave analog to the chiral magnetic wave predicted in the quark-gluon plasma but driven by an elastic axial pseudo-magnetic field. It involves the axial-axial-axial contribution to the chiral anomaly which couples the chiral charge density to the elastic axial gauge field. The chiral sound is unidirectional: it propagates along the elastic magnetic field and not in the opposite direction. The CSW may propagate for long distances as it does not couple directly to quickly dissipating electromagnetic plasmons, while its damping is controlled by the slow chirality flip rate. We propose an experimental setup to directly detect the chiral sound, which is excited by mechanical vibrations of the crystal lattice in the GHz frequency range. Our findings contribute to a new trend, the chiral acoustics, in strained Weyl semimetals.
doi_str_mv 10.1103/PhysRevResearch.1.032040
format article
fullrecord <record><control><sourceid>hal_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8758f8871d79498187e7e3f7c7423954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8758f8871d79498187e7e3f7c7423954</doaj_id><sourcerecordid>oai_HAL_hal_02109227v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e727f9be6a117aeb9d4c30e3a80d4c4a0571ed19eafa6cf054aa34bee196855b3</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRsNT-h1w9JO5kd7O7x1LUFgpKUTwuk2RiUtJGdmOl_97UiKin93jz5js8xiLgCQAXN4_1MWzosKFA6Is6gYSLlEt-xiZpJkUMKpPnv_wlm4Ww5ZynCkAaNWHJom48tlHo3vdl9IEHClGzj0LvsdlTGb3QcTjSrtlRj224YhfVIDT71il7vrt9Wizj9cP9ajFfx4Xkto9Jp7qyOWUIoJFyW8pCcBJo-OAkcqWBSrCEFWZFxZVEFDInApsZpXIxZauRW3a4dW--2aE_ug4b9xV0_tWh75uiJWe0MpUxGkptpTVgNGkSlS60TIVVcmBdj6wa2z-o5XztThlPgds01QcYumbsFr4LwVP18wDcnSZ3_yZ34MbJxSeil3c0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chiral sound waves in strained Weyl semimetals</title><source>DOAJ Directory of Open Access Journals</source><creator>Chernodub, M. N. ; Vozmediano, María A. H.</creator><creatorcontrib>Chernodub, M. N. ; Vozmediano, María A. H.</creatorcontrib><description>We show that a strained wire of a Weyl semimetal supports a new type of gapless excitation, the chiral sound wave (CSW). It is a longitudinal charge density wave analog to the chiral magnetic wave predicted in the quark-gluon plasma but driven by an elastic axial pseudo-magnetic field. It involves the axial-axial-axial contribution to the chiral anomaly which couples the chiral charge density to the elastic axial gauge field. The chiral sound is unidirectional: it propagates along the elastic magnetic field and not in the opposite direction. The CSW may propagate for long distances as it does not couple directly to quickly dissipating electromagnetic plasmons, while its damping is controlled by the slow chirality flip rate. We propose an experimental setup to directly detect the chiral sound, which is excited by mechanical vibrations of the crystal lattice in the GHz frequency range. Our findings contribute to a new trend, the chiral acoustics, in strained Weyl semimetals.</description><identifier>ISSN: 2643-1564</identifier><identifier>EISSN: 2643-1564</identifier><identifier>DOI: 10.1103/PhysRevResearch.1.032040</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; High Energy Physics - Phenomenology ; Physics ; Strongly Correlated Electrons</subject><ispartof>Physical review research, 2019-12, Vol.1 (3), p.032040, Article 032040</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e727f9be6a117aeb9d4c30e3a80d4c4a0571ed19eafa6cf054aa34bee196855b3</citedby><cites>FETCH-LOGICAL-c409t-e727f9be6a117aeb9d4c30e3a80d4c4a0571ed19eafa6cf054aa34bee196855b3</cites><orcidid>0000-0003-2101-4914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02109227$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chernodub, M. N.</creatorcontrib><creatorcontrib>Vozmediano, María A. H.</creatorcontrib><title>Chiral sound waves in strained Weyl semimetals</title><title>Physical review research</title><description>We show that a strained wire of a Weyl semimetal supports a new type of gapless excitation, the chiral sound wave (CSW). It is a longitudinal charge density wave analog to the chiral magnetic wave predicted in the quark-gluon plasma but driven by an elastic axial pseudo-magnetic field. It involves the axial-axial-axial contribution to the chiral anomaly which couples the chiral charge density to the elastic axial gauge field. The chiral sound is unidirectional: it propagates along the elastic magnetic field and not in the opposite direction. The CSW may propagate for long distances as it does not couple directly to quickly dissipating electromagnetic plasmons, while its damping is controlled by the slow chirality flip rate. We propose an experimental setup to directly detect the chiral sound, which is excited by mechanical vibrations of the crystal lattice in the GHz frequency range. Our findings contribute to a new trend, the chiral acoustics, in strained Weyl semimetals.</description><subject>Condensed Matter</subject><subject>High Energy Physics - Phenomenology</subject><subject>Physics</subject><subject>Strongly Correlated Electrons</subject><issn>2643-1564</issn><issn>2643-1564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkEFLw0AQhRdRsNT-h1w9JO5kd7O7x1LUFgpKUTwuk2RiUtJGdmOl_97UiKin93jz5js8xiLgCQAXN4_1MWzosKFA6Is6gYSLlEt-xiZpJkUMKpPnv_wlm4Ww5ZynCkAaNWHJom48tlHo3vdl9IEHClGzj0LvsdlTGb3QcTjSrtlRj224YhfVIDT71il7vrt9Wizj9cP9ajFfx4Xkto9Jp7qyOWUIoJFyW8pCcBJo-OAkcqWBSrCEFWZFxZVEFDInApsZpXIxZauRW3a4dW--2aE_ug4b9xV0_tWh75uiJWe0MpUxGkptpTVgNGkSlS60TIVVcmBdj6wa2z-o5XztThlPgds01QcYumbsFr4LwVP18wDcnSZ3_yZ34MbJxSeil3c0</recordid><startdate>20191217</startdate><enddate>20191217</enddate><creator>Chernodub, M. N.</creator><creator>Vozmediano, María A. H.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2101-4914</orcidid></search><sort><creationdate>20191217</creationdate><title>Chiral sound waves in strained Weyl semimetals</title><author>Chernodub, M. N. ; Vozmediano, María A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e727f9be6a117aeb9d4c30e3a80d4c4a0571ed19eafa6cf054aa34bee196855b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Condensed Matter</topic><topic>High Energy Physics - Phenomenology</topic><topic>Physics</topic><topic>Strongly Correlated Electrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernodub, M. N.</creatorcontrib><creatorcontrib>Vozmediano, María A. H.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernodub, M. N.</au><au>Vozmediano, María A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral sound waves in strained Weyl semimetals</atitle><jtitle>Physical review research</jtitle><date>2019-12-17</date><risdate>2019</risdate><volume>1</volume><issue>3</issue><spage>032040</spage><pages>032040-</pages><artnum>032040</artnum><issn>2643-1564</issn><eissn>2643-1564</eissn><abstract>We show that a strained wire of a Weyl semimetal supports a new type of gapless excitation, the chiral sound wave (CSW). It is a longitudinal charge density wave analog to the chiral magnetic wave predicted in the quark-gluon plasma but driven by an elastic axial pseudo-magnetic field. It involves the axial-axial-axial contribution to the chiral anomaly which couples the chiral charge density to the elastic axial gauge field. The chiral sound is unidirectional: it propagates along the elastic magnetic field and not in the opposite direction. The CSW may propagate for long distances as it does not couple directly to quickly dissipating electromagnetic plasmons, while its damping is controlled by the slow chirality flip rate. We propose an experimental setup to directly detect the chiral sound, which is excited by mechanical vibrations of the crystal lattice in the GHz frequency range. Our findings contribute to a new trend, the chiral acoustics, in strained Weyl semimetals.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevResearch.1.032040</doi><orcidid>https://orcid.org/0000-0003-2101-4914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2643-1564
ispartof Physical review research, 2019-12, Vol.1 (3), p.032040, Article 032040
issn 2643-1564
2643-1564
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8758f8871d79498187e7e3f7c7423954
source DOAJ Directory of Open Access Journals
subjects Condensed Matter
High Energy Physics - Phenomenology
Physics
Strongly Correlated Electrons
title Chiral sound waves in strained Weyl semimetals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20sound%20waves%20in%20strained%20Weyl%20semimetals&rft.jtitle=Physical%20review%20research&rft.au=Chernodub,%20M.%20N.&rft.date=2019-12-17&rft.volume=1&rft.issue=3&rft.spage=032040&rft.pages=032040-&rft.artnum=032040&rft.issn=2643-1564&rft.eissn=2643-1564&rft_id=info:doi/10.1103/PhysRevResearch.1.032040&rft_dat=%3Chal_doaj_%3Eoai_HAL_hal_02109227v1%3C/hal_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-e727f9be6a117aeb9d4c30e3a80d4c4a0571ed19eafa6cf054aa34bee196855b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true