Loading…

Full-Wave Analysis of Stable Cross Fractal Frequency Selective Surfaces Using an Iterative Procedure Based on Wave Concept

This work presents a full-wave analysis of stable frequency selective surfaces (FSSs) composed of periodic arrays of cross fractal patch elements. The shapes of these patch elements are defined conforming to a fractal concept, where the generator fractal geometry is successively subdivided into part...

Full description

Saved in:
Bibliographic Details
Published in:International journal of antennas and propagation 2015-01, Vol.2015 (2015), p.1-7
Main Authors: Silva Neto, V. P., D’Assunção, A. G., Duarte, M. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents a full-wave analysis of stable frequency selective surfaces (FSSs) composed of periodic arrays of cross fractal patch elements. The shapes of these patch elements are defined conforming to a fractal concept, where the generator fractal geometry is successively subdivided into parts which are smaller copies of the previous ones (defined as fractal levels). The main objective of this work is to investigate the performance of FSSs with cross fractal patch element geometries including their frequency response and stability in relation to both the angle of incidence and polarization of the plane wave. The frequency response of FSS structures is obtained using the wave concept iterative procedure (WCIP). This method is based on a wave concept formulation and the boundary conditions for the FSS structure. Prototypes were manufactured and measured to verify the WCIP model accuracy. A good agreement between WCIP and measured results was observed for the proposed cross fractal FSSs. In addition, these FSSs exhibited good angular stability.
ISSN:1687-5869
1687-5877
DOI:10.1155/2015/401210