Loading…
Phylogenetic structure is determined by patch size in rock outcrop vegetation on an inselberg in the northern Amazon region
ABSTRACT Although inselbergs from around the world are iconic ecosystems, little is known on the underlying mechanisms of community assembly, especially in their characteristic patchy outcrop vegetation. Environmental constraints are expected to cause phylogenetic clustering when ecological niches a...
Saved in:
Published in: | Acta amazonica 2018-09, Vol.48 (3), p.248-256 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT Although inselbergs from around the world are iconic ecosystems, little is known on the underlying mechanisms of community assembly, especially in their characteristic patchy outcrop vegetation. Environmental constraints are expected to cause phylogenetic clustering when ecological niches are conserved within evolutionary lineages. We tested whether vegetation patches from rock outcrops of the Piedra La Tortuga Natural Monument, in the northern Amazon region, are phylogenetically clustered, indicating that environmental filtering is the dominant driver of community assemblage therein. We classified all patches according to their size as very small (< 1 m2), small (1-4 m2), medium-sized (4-8 m2), and large patches (8-15 m2). From each class, we randomly selected 10 patches, totalizing 40 patches covering 226 m2. All individuals found in the 40 isolated patches were identified to the species level. We also correlated measurements of phylogenetic community structure with patch size. We found that species from patches are restricted to the clades monocots, fabids, malvids, and lamiids. We conclude that vegetation in this rock outcrop is phylogenetically clustered. Furthermore, we found that phylogenetic turnover between pairs of patches increases with patch size, which is consistent with a scenario of higher environmental stress in smaller patches. Further research is necessary to identify nurse species in inselberg vegetation, which is pivotal for conservation and restoration of this particular ecosystem.
RESUMO Ainda que os inselbergs ao redor do mundo sejam ecossistemas icônicos, pouco se sabe sobre os mecanismos subjacentes que estruturam suas comunidades vegetais, especialmente nas manchas de vegetação sobre afloramentos rochosos. Espera-se que as restrições ambientais causem agrupamento filogenético quando os nichos ecológicos são conservados dentro das linhagens evolutivas. Nós testamos se as manchas de vegetação dos afloramentos rochosos do Monumento Natural Piedra La Tortuga, no norte da região amazônica, apresentam indicadores filogenéticos de que a filtragem ambiental é o principal direcionador da estruturação da comunidade. Classificamos todas as manchas de acordo com seu tamanho como muito pequenas ( |
---|---|
ISSN: | 0044-5967 1809-4392 |
DOI: | 10.1590/1809-4392201704561 |