Loading…
Brain disease research based on functional magnetic resonance imaging data and machine learning: a review
Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, wh...
Saved in:
Published in: | Frontiers in neuroscience 2023-08, Vol.17, p.1227491-1227491 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3 |
container_end_page | 1227491 |
container_issue | |
container_start_page | 1227491 |
container_title | Frontiers in neuroscience |
container_volume | 17 |
creator | Teng, Jing Mi, Chunlin Shi, Jian Li, Na |
description | Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis. |
doi_str_mv | 10.3389/fnins.2023.1227491 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef</doaj_id><sourcerecordid>2851829369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3</originalsourceid><addsrcrecordid>eNpdkk2LFDEQhhtRcF39A54CXrzMmO9OvIgufiwseFHwFqqTykyGnvSadK_4703vDOJ6qqTy8FAV3q57yehWCGPfxJxy3XLKxZZx3kvLHnUXTGu-kUr8ePzP-Wn3rNYDpZobyS-69KFAyiSkilCRFGy1-D0Z2i2QKZO4ZD-nKcNIjrDLOCe_Uq2RPZLUeinvSIAZCOTQGL9PGcnYNG2m3VsCDb9L-Ot59yTCWPHFuV523z99_Hb1ZXPz9fP11fubjZdczRuPwUikCoynYhisUkZDHzlEG4PgUgba98xaNkjlhQUhdIgBeFDeBMm9uOyuT94wwcHdljZi-e0mSO6-MZWdg9K2GNGZvo8YerBDZFJab6KwVDGNUXvdY2yudyfX7TIcMXjMc4HxgfThS057t5vuHKNSW21sM7w-G8r0c8E6u2OqHscRMk5LddxoqpnhVjX01X_oYVpK-_iVUisj9CrkJ8qXqdaC8e80jLo1C-4-C27NgjtnQfwBZLiq2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851829369</pqid></control><display><type>article</type><title>Brain disease research based on functional magnetic resonance imaging data and machine learning: a review</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Teng, Jing ; Mi, Chunlin ; Shi, Jian ; Li, Na</creator><creatorcontrib>Teng, Jing ; Mi, Chunlin ; Shi, Jian ; Li, Na</creatorcontrib><description>Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.</description><identifier>ISSN: 1662-453X</identifier><identifier>ISSN: 1662-4548</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2023.1227491</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Alzheimer's disease ; Artificial intelligence ; Autism ; Brain diseases ; Brain mapping ; Brain research ; Cognitive ability ; Diagnosis ; feature selection ; Functional magnetic resonance imaging ; Health care ; Learning algorithms ; Machine learning ; Magnetic resonance imaging ; Medical diagnosis ; Mental disorders ; Movement disorders ; Neurodegenerative diseases ; Neuroimaging ; Neuroscience ; Parkinson's disease ; Pathogenesis ; Public health ; Reviews ; Schizophrenia ; Time series</subject><ispartof>Frontiers in neuroscience, 2023-08, Vol.17, p.1227491-1227491</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2023 Teng, Mi, Shi and Li. 2023 Teng, Mi, Shi and Li</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2851829369/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2851829369?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Teng, Jing</creatorcontrib><creatorcontrib>Mi, Chunlin</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><title>Brain disease research based on functional magnetic resonance imaging data and machine learning: a review</title><title>Frontiers in neuroscience</title><description>Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.</description><subject>Alzheimer's disease</subject><subject>Artificial intelligence</subject><subject>Autism</subject><subject>Brain diseases</subject><subject>Brain mapping</subject><subject>Brain research</subject><subject>Cognitive ability</subject><subject>Diagnosis</subject><subject>feature selection</subject><subject>Functional magnetic resonance imaging</subject><subject>Health care</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnosis</subject><subject>Mental disorders</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>Public health</subject><subject>Reviews</subject><subject>Schizophrenia</subject><subject>Time series</subject><issn>1662-453X</issn><issn>1662-4548</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk2LFDEQhhtRcF39A54CXrzMmO9OvIgufiwseFHwFqqTykyGnvSadK_4703vDOJ6qqTy8FAV3q57yehWCGPfxJxy3XLKxZZx3kvLHnUXTGu-kUr8ePzP-Wn3rNYDpZobyS-69KFAyiSkilCRFGy1-D0Z2i2QKZO4ZD-nKcNIjrDLOCe_Uq2RPZLUeinvSIAZCOTQGL9PGcnYNG2m3VsCDb9L-Ot59yTCWPHFuV523z99_Hb1ZXPz9fP11fubjZdczRuPwUikCoynYhisUkZDHzlEG4PgUgba98xaNkjlhQUhdIgBeFDeBMm9uOyuT94wwcHdljZi-e0mSO6-MZWdg9K2GNGZvo8YerBDZFJab6KwVDGNUXvdY2yudyfX7TIcMXjMc4HxgfThS057t5vuHKNSW21sM7w-G8r0c8E6u2OqHscRMk5LddxoqpnhVjX01X_oYVpK-_iVUisj9CrkJ8qXqdaC8e80jLo1C-4-C27NgjtnQfwBZLiq2Q</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Teng, Jing</creator><creator>Mi, Chunlin</creator><creator>Shi, Jian</creator><creator>Li, Na</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230817</creationdate><title>Brain disease research based on functional magnetic resonance imaging data and machine learning: a review</title><author>Teng, Jing ; Mi, Chunlin ; Shi, Jian ; Li, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Artificial intelligence</topic><topic>Autism</topic><topic>Brain diseases</topic><topic>Brain mapping</topic><topic>Brain research</topic><topic>Cognitive ability</topic><topic>Diagnosis</topic><topic>feature selection</topic><topic>Functional magnetic resonance imaging</topic><topic>Health care</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnosis</topic><topic>Mental disorders</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>Public health</topic><topic>Reviews</topic><topic>Schizophrenia</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, Jing</creatorcontrib><creatorcontrib>Mi, Chunlin</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, Jing</au><au>Mi, Chunlin</au><au>Shi, Jian</au><au>Li, Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain disease research based on functional magnetic resonance imaging data and machine learning: a review</atitle><jtitle>Frontiers in neuroscience</jtitle><date>2023-08-17</date><risdate>2023</risdate><volume>17</volume><spage>1227491</spage><epage>1227491</epage><pages>1227491-1227491</pages><issn>1662-453X</issn><issn>1662-4548</issn><eissn>1662-453X</eissn><abstract>Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><doi>10.3389/fnins.2023.1227491</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-453X |
ispartof | Frontiers in neuroscience, 2023-08, Vol.17, p.1227491-1227491 |
issn | 1662-453X 1662-4548 1662-453X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Alzheimer's disease Artificial intelligence Autism Brain diseases Brain mapping Brain research Cognitive ability Diagnosis feature selection Functional magnetic resonance imaging Health care Learning algorithms Machine learning Magnetic resonance imaging Medical diagnosis Mental disorders Movement disorders Neurodegenerative diseases Neuroimaging Neuroscience Parkinson's disease Pathogenesis Public health Reviews Schizophrenia Time series |
title | Brain disease research based on functional magnetic resonance imaging data and machine learning: a review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20disease%20research%20based%20on%20functional%20magnetic%20resonance%20imaging%20data%20and%20machine%20learning:%20a%20review&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Teng,%20Jing&rft.date=2023-08-17&rft.volume=17&rft.spage=1227491&rft.epage=1227491&rft.pages=1227491-1227491&rft.issn=1662-453X&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2023.1227491&rft_dat=%3Cproquest_doaj_%3E2851829369%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2851829369&rft_id=info:pmid/&rfr_iscdi=true |