Loading…

Brain disease research based on functional magnetic resonance imaging data and machine learning: a review

Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, wh...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience 2023-08, Vol.17, p.1227491-1227491
Main Authors: Teng, Jing, Mi, Chunlin, Shi, Jian, Li, Na
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3
container_end_page 1227491
container_issue
container_start_page 1227491
container_title Frontiers in neuroscience
container_volume 17
creator Teng, Jing
Mi, Chunlin
Shi, Jian
Li, Na
description Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.
doi_str_mv 10.3389/fnins.2023.1227491
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef</doaj_id><sourcerecordid>2851829369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3</originalsourceid><addsrcrecordid>eNpdkk2LFDEQhhtRcF39A54CXrzMmO9OvIgufiwseFHwFqqTykyGnvSadK_4703vDOJ6qqTy8FAV3q57yehWCGPfxJxy3XLKxZZx3kvLHnUXTGu-kUr8ePzP-Wn3rNYDpZobyS-69KFAyiSkilCRFGy1-D0Z2i2QKZO4ZD-nKcNIjrDLOCe_Uq2RPZLUeinvSIAZCOTQGL9PGcnYNG2m3VsCDb9L-Ot59yTCWPHFuV523z99_Hb1ZXPz9fP11fubjZdczRuPwUikCoynYhisUkZDHzlEG4PgUgba98xaNkjlhQUhdIgBeFDeBMm9uOyuT94wwcHdljZi-e0mSO6-MZWdg9K2GNGZvo8YerBDZFJab6KwVDGNUXvdY2yudyfX7TIcMXjMc4HxgfThS057t5vuHKNSW21sM7w-G8r0c8E6u2OqHscRMk5LddxoqpnhVjX01X_oYVpK-_iVUisj9CrkJ8qXqdaC8e80jLo1C-4-C27NgjtnQfwBZLiq2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851829369</pqid></control><display><type>article</type><title>Brain disease research based on functional magnetic resonance imaging data and machine learning: a review</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Teng, Jing ; Mi, Chunlin ; Shi, Jian ; Li, Na</creator><creatorcontrib>Teng, Jing ; Mi, Chunlin ; Shi, Jian ; Li, Na</creatorcontrib><description>Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.</description><identifier>ISSN: 1662-453X</identifier><identifier>ISSN: 1662-4548</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2023.1227491</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Alzheimer's disease ; Artificial intelligence ; Autism ; Brain diseases ; Brain mapping ; Brain research ; Cognitive ability ; Diagnosis ; feature selection ; Functional magnetic resonance imaging ; Health care ; Learning algorithms ; Machine learning ; Magnetic resonance imaging ; Medical diagnosis ; Mental disorders ; Movement disorders ; Neurodegenerative diseases ; Neuroimaging ; Neuroscience ; Parkinson's disease ; Pathogenesis ; Public health ; Reviews ; Schizophrenia ; Time series</subject><ispartof>Frontiers in neuroscience, 2023-08, Vol.17, p.1227491-1227491</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2023 Teng, Mi, Shi and Li. 2023 Teng, Mi, Shi and Li</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2851829369/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2851829369?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Teng, Jing</creatorcontrib><creatorcontrib>Mi, Chunlin</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><title>Brain disease research based on functional magnetic resonance imaging data and machine learning: a review</title><title>Frontiers in neuroscience</title><description>Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.</description><subject>Alzheimer's disease</subject><subject>Artificial intelligence</subject><subject>Autism</subject><subject>Brain diseases</subject><subject>Brain mapping</subject><subject>Brain research</subject><subject>Cognitive ability</subject><subject>Diagnosis</subject><subject>feature selection</subject><subject>Functional magnetic resonance imaging</subject><subject>Health care</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnosis</subject><subject>Mental disorders</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>Public health</subject><subject>Reviews</subject><subject>Schizophrenia</subject><subject>Time series</subject><issn>1662-453X</issn><issn>1662-4548</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk2LFDEQhhtRcF39A54CXrzMmO9OvIgufiwseFHwFqqTykyGnvSadK_4703vDOJ6qqTy8FAV3q57yehWCGPfxJxy3XLKxZZx3kvLHnUXTGu-kUr8ePzP-Wn3rNYDpZobyS-69KFAyiSkilCRFGy1-D0Z2i2QKZO4ZD-nKcNIjrDLOCe_Uq2RPZLUeinvSIAZCOTQGL9PGcnYNG2m3VsCDb9L-Ot59yTCWPHFuV523z99_Hb1ZXPz9fP11fubjZdczRuPwUikCoynYhisUkZDHzlEG4PgUgba98xaNkjlhQUhdIgBeFDeBMm9uOyuT94wwcHdljZi-e0mSO6-MZWdg9K2GNGZvo8YerBDZFJab6KwVDGNUXvdY2yudyfX7TIcMXjMc4HxgfThS057t5vuHKNSW21sM7w-G8r0c8E6u2OqHscRMk5LddxoqpnhVjX01X_oYVpK-_iVUisj9CrkJ8qXqdaC8e80jLo1C-4-C27NgjtnQfwBZLiq2Q</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Teng, Jing</creator><creator>Mi, Chunlin</creator><creator>Shi, Jian</creator><creator>Li, Na</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230817</creationdate><title>Brain disease research based on functional magnetic resonance imaging data and machine learning: a review</title><author>Teng, Jing ; Mi, Chunlin ; Shi, Jian ; Li, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Artificial intelligence</topic><topic>Autism</topic><topic>Brain diseases</topic><topic>Brain mapping</topic><topic>Brain research</topic><topic>Cognitive ability</topic><topic>Diagnosis</topic><topic>feature selection</topic><topic>Functional magnetic resonance imaging</topic><topic>Health care</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnosis</topic><topic>Mental disorders</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>Public health</topic><topic>Reviews</topic><topic>Schizophrenia</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, Jing</creatorcontrib><creatorcontrib>Mi, Chunlin</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, Jing</au><au>Mi, Chunlin</au><au>Shi, Jian</au><au>Li, Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain disease research based on functional magnetic resonance imaging data and machine learning: a review</atitle><jtitle>Frontiers in neuroscience</jtitle><date>2023-08-17</date><risdate>2023</risdate><volume>17</volume><spage>1227491</spage><epage>1227491</epage><pages>1227491-1227491</pages><issn>1662-453X</issn><issn>1662-4548</issn><eissn>1662-453X</eissn><abstract>Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><doi>10.3389/fnins.2023.1227491</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-453X
ispartof Frontiers in neuroscience, 2023-08, Vol.17, p.1227491-1227491
issn 1662-453X
1662-4548
1662-453X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Alzheimer's disease
Artificial intelligence
Autism
Brain diseases
Brain mapping
Brain research
Cognitive ability
Diagnosis
feature selection
Functional magnetic resonance imaging
Health care
Learning algorithms
Machine learning
Magnetic resonance imaging
Medical diagnosis
Mental disorders
Movement disorders
Neurodegenerative diseases
Neuroimaging
Neuroscience
Parkinson's disease
Pathogenesis
Public health
Reviews
Schizophrenia
Time series
title Brain disease research based on functional magnetic resonance imaging data and machine learning: a review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20disease%20research%20based%20on%20functional%20magnetic%20resonance%20imaging%20data%20and%20machine%20learning:%20a%20review&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Teng,%20Jing&rft.date=2023-08-17&rft.volume=17&rft.spage=1227491&rft.epage=1227491&rft.pages=1227491-1227491&rft.issn=1662-453X&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2023.1227491&rft_dat=%3Cproquest_doaj_%3E2851829369%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-ced84e05a8c03bb95586a7f2af9fd3244d0771991b45c39a336dfda2d5c8d42c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2851829369&rft_id=info:pmid/&rfr_iscdi=true