Loading…
Nanomaterials in Cementitious Composites: An Update
This review is an update about the addition of nanomaterials in cementitious composites in order to improve their performance. The most common used nanomaterials for cementitious materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and nanoTiO . All these nanomater...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2021-03, Vol.26 (5), p.1430 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-a67616723554bcc2483b7d9c28a99ea4f42e1790b35292f016caaadf424507853 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-a67616723554bcc2483b7d9c28a99ea4f42e1790b35292f016caaadf424507853 |
container_end_page | |
container_issue | 5 |
container_start_page | 1430 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 26 |
creator | Metaxa, Zoi S Tolkou, Athanasia K Efstathiou, Stefania Rahdar, Abbas Favvas, Evangelos P Mitropoulos, Athanasios C Kyzas, George Z |
description | This review is an update about the addition of nanomaterials in cementitious composites in order to improve their performance. The most common used nanomaterials for cementitious materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and nanoTiO
. All these nanomaterials can improve the physical, mechanical, thermal and electrical properties of cementitious composites, for example increase their compressive and tensile strength, accelerate hydration, decrease porosity and enhance fire resistance. Cement based materials have a very complex nanostructure consisting of hydration products, crystals, unhydrated cement particles and nanoporosity where traditional reinforcement, which is at the macro and micro scale, is not effective. Nanomaterials can reinforce the nanoscale, which wasn't possible heretofore, enhancing the performance of the cementitious matrix. |
doi_str_mv | 10.3390/molecules26051430 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_878d2f7c38254a55829c6bd133c37ba2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_878d2f7c38254a55829c6bd133c37ba2</doaj_id><sourcerecordid>2501280565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-a67616723554bcc2483b7d9c28a99ea4f42e1790b35292f016caaadf424507853</originalsourceid><addsrcrecordid>eNplkctKxTAQhoMo3h_AjRRcH00yuboQ5OANRDe6Dmmaag5tc0xawbc3elQUVzNM_vlmJj9CBwQfA2h80sfOu6nzmQrMCQO8hrYJo3gGmOn1X_kW2sl5gTEljPBNtAWgMJZabiO4s0Ps7ehTsF2uwlDNfe-HMYwhTrmax34Zcxh9Pq3Oh-px2RTpHtpoi9jvf8Vd9Hh58TC_nt3eX93Mz29njmkYZ1ZIQYSkwDmrnaNMQS0b7aiyWnvLWkY9kRrXwKmmLSbCWWubUmYcS8VhF92suE20C7NMobfpzUQbzGchpidj0xhc542SqqGtdKAoZ5ZzRbUTdUMAHMja0sI6W7GWU937xpUTk-3-QP--DOHZPMVXI7Uo3ygK4OgLkOLL5PNoFnFKQ7nfUI4JVZiLj5XJSuVSzDn59mcCwebDM_PPs9Jz-Hu1n45vk-Advd6TLw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501280565</pqid></control><display><type>article</type><title>Nanomaterials in Cementitious Composites: An Update</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Metaxa, Zoi S ; Tolkou, Athanasia K ; Efstathiou, Stefania ; Rahdar, Abbas ; Favvas, Evangelos P ; Mitropoulos, Athanasios C ; Kyzas, George Z</creator><creatorcontrib>Metaxa, Zoi S ; Tolkou, Athanasia K ; Efstathiou, Stefania ; Rahdar, Abbas ; Favvas, Evangelos P ; Mitropoulos, Athanasios C ; Kyzas, George Z</creatorcontrib><description>This review is an update about the addition of nanomaterials in cementitious composites in order to improve their performance. The most common used nanomaterials for cementitious materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and nanoTiO
. All these nanomaterials can improve the physical, mechanical, thermal and electrical properties of cementitious composites, for example increase their compressive and tensile strength, accelerate hydration, decrease porosity and enhance fire resistance. Cement based materials have a very complex nanostructure consisting of hydration products, crystals, unhydrated cement particles and nanoporosity where traditional reinforcement, which is at the macro and micro scale, is not effective. Nanomaterials can reinforce the nanoscale, which wasn't possible heretofore, enhancing the performance of the cementitious matrix.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26051430</identifier><identifier>PMID: 33800797</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon ; Cement ; Cement hydration ; Cement reinforcements ; cementitious nano-composites ; Composite materials ; Compressive strength ; Concrete ; Construction Materials - analysis ; Crystals ; Electrical properties ; Fire resistance ; Graphene ; Hydration ; Mechanical properties ; Nanocomposites ; Nanomaterials ; Nanostructures - chemistry ; Nanotechnology ; Permeability ; Porosity ; Review ; Scanning electron microscopy ; Surfactants ; Tensile strength</subject><ispartof>Molecules (Basel, Switzerland), 2021-03, Vol.26 (5), p.1430</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-a67616723554bcc2483b7d9c28a99ea4f42e1790b35292f016caaadf424507853</citedby><cites>FETCH-LOGICAL-c493t-a67616723554bcc2483b7d9c28a99ea4f42e1790b35292f016caaadf424507853</cites><orcidid>0000-0003-1516-3761 ; 0000-0002-0871-4564 ; 0000-0003-4766-9214 ; 0000-0003-3369-8364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2501280565/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2501280565?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33800797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metaxa, Zoi S</creatorcontrib><creatorcontrib>Tolkou, Athanasia K</creatorcontrib><creatorcontrib>Efstathiou, Stefania</creatorcontrib><creatorcontrib>Rahdar, Abbas</creatorcontrib><creatorcontrib>Favvas, Evangelos P</creatorcontrib><creatorcontrib>Mitropoulos, Athanasios C</creatorcontrib><creatorcontrib>Kyzas, George Z</creatorcontrib><title>Nanomaterials in Cementitious Composites: An Update</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>This review is an update about the addition of nanomaterials in cementitious composites in order to improve their performance. The most common used nanomaterials for cementitious materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and nanoTiO
. All these nanomaterials can improve the physical, mechanical, thermal and electrical properties of cementitious composites, for example increase their compressive and tensile strength, accelerate hydration, decrease porosity and enhance fire resistance. Cement based materials have a very complex nanostructure consisting of hydration products, crystals, unhydrated cement particles and nanoporosity where traditional reinforcement, which is at the macro and micro scale, is not effective. Nanomaterials can reinforce the nanoscale, which wasn't possible heretofore, enhancing the performance of the cementitious matrix.</description><subject>Carbon</subject><subject>Cement</subject><subject>Cement hydration</subject><subject>Cement reinforcements</subject><subject>cementitious nano-composites</subject><subject>Composite materials</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Construction Materials - analysis</subject><subject>Crystals</subject><subject>Electrical properties</subject><subject>Fire resistance</subject><subject>Graphene</subject><subject>Hydration</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Review</subject><subject>Scanning electron microscopy</subject><subject>Surfactants</subject><subject>Tensile strength</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkctKxTAQhoMo3h_AjRRcH00yuboQ5OANRDe6Dmmaag5tc0xawbc3elQUVzNM_vlmJj9CBwQfA2h80sfOu6nzmQrMCQO8hrYJo3gGmOn1X_kW2sl5gTEljPBNtAWgMJZabiO4s0Ps7ehTsF2uwlDNfe-HMYwhTrmax34Zcxh9Pq3Oh-px2RTpHtpoi9jvf8Vd9Hh58TC_nt3eX93Mz29njmkYZ1ZIQYSkwDmrnaNMQS0b7aiyWnvLWkY9kRrXwKmmLSbCWWubUmYcS8VhF92suE20C7NMobfpzUQbzGchpidj0xhc542SqqGtdKAoZ5ZzRbUTdUMAHMja0sI6W7GWU937xpUTk-3-QP--DOHZPMVXI7Uo3ygK4OgLkOLL5PNoFnFKQ7nfUI4JVZiLj5XJSuVSzDn59mcCwebDM_PPs9Jz-Hu1n45vk-Advd6TLw</recordid><startdate>20210306</startdate><enddate>20210306</enddate><creator>Metaxa, Zoi S</creator><creator>Tolkou, Athanasia K</creator><creator>Efstathiou, Stefania</creator><creator>Rahdar, Abbas</creator><creator>Favvas, Evangelos P</creator><creator>Mitropoulos, Athanasios C</creator><creator>Kyzas, George Z</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1516-3761</orcidid><orcidid>https://orcid.org/0000-0002-0871-4564</orcidid><orcidid>https://orcid.org/0000-0003-4766-9214</orcidid><orcidid>https://orcid.org/0000-0003-3369-8364</orcidid></search><sort><creationdate>20210306</creationdate><title>Nanomaterials in Cementitious Composites: An Update</title><author>Metaxa, Zoi S ; Tolkou, Athanasia K ; Efstathiou, Stefania ; Rahdar, Abbas ; Favvas, Evangelos P ; Mitropoulos, Athanasios C ; Kyzas, George Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-a67616723554bcc2483b7d9c28a99ea4f42e1790b35292f016caaadf424507853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Cement</topic><topic>Cement hydration</topic><topic>Cement reinforcements</topic><topic>cementitious nano-composites</topic><topic>Composite materials</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Construction Materials - analysis</topic><topic>Crystals</topic><topic>Electrical properties</topic><topic>Fire resistance</topic><topic>Graphene</topic><topic>Hydration</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Review</topic><topic>Scanning electron microscopy</topic><topic>Surfactants</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metaxa, Zoi S</creatorcontrib><creatorcontrib>Tolkou, Athanasia K</creatorcontrib><creatorcontrib>Efstathiou, Stefania</creatorcontrib><creatorcontrib>Rahdar, Abbas</creatorcontrib><creatorcontrib>Favvas, Evangelos P</creatorcontrib><creatorcontrib>Mitropoulos, Athanasios C</creatorcontrib><creatorcontrib>Kyzas, George Z</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metaxa, Zoi S</au><au>Tolkou, Athanasia K</au><au>Efstathiou, Stefania</au><au>Rahdar, Abbas</au><au>Favvas, Evangelos P</au><au>Mitropoulos, Athanasios C</au><au>Kyzas, George Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomaterials in Cementitious Composites: An Update</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2021-03-06</date><risdate>2021</risdate><volume>26</volume><issue>5</issue><spage>1430</spage><pages>1430-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>This review is an update about the addition of nanomaterials in cementitious composites in order to improve their performance. The most common used nanomaterials for cementitious materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and nanoTiO
. All these nanomaterials can improve the physical, mechanical, thermal and electrical properties of cementitious composites, for example increase their compressive and tensile strength, accelerate hydration, decrease porosity and enhance fire resistance. Cement based materials have a very complex nanostructure consisting of hydration products, crystals, unhydrated cement particles and nanoporosity where traditional reinforcement, which is at the macro and micro scale, is not effective. Nanomaterials can reinforce the nanoscale, which wasn't possible heretofore, enhancing the performance of the cementitious matrix.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33800797</pmid><doi>10.3390/molecules26051430</doi><orcidid>https://orcid.org/0000-0003-1516-3761</orcidid><orcidid>https://orcid.org/0000-0002-0871-4564</orcidid><orcidid>https://orcid.org/0000-0003-4766-9214</orcidid><orcidid>https://orcid.org/0000-0003-3369-8364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2021-03, Vol.26 (5), p.1430 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_878d2f7c38254a55829c6bd133c37ba2 |
source | Publicly Available Content Database; PubMed Central |
subjects | Carbon Cement Cement hydration Cement reinforcements cementitious nano-composites Composite materials Compressive strength Concrete Construction Materials - analysis Crystals Electrical properties Fire resistance Graphene Hydration Mechanical properties Nanocomposites Nanomaterials Nanostructures - chemistry Nanotechnology Permeability Porosity Review Scanning electron microscopy Surfactants Tensile strength |
title | Nanomaterials in Cementitious Composites: An Update |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomaterials%20in%20Cementitious%20Composites:%20An%20Update&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Metaxa,%20Zoi%20S&rft.date=2021-03-06&rft.volume=26&rft.issue=5&rft.spage=1430&rft.pages=1430-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26051430&rft_dat=%3Cproquest_doaj_%3E2501280565%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-a67616723554bcc2483b7d9c28a99ea4f42e1790b35292f016caaadf424507853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501280565&rft_id=info:pmid/33800797&rfr_iscdi=true |