Loading…
Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy
Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cel...
Saved in:
Published in: | Journal of nanobiotechnology 2020-06, Vol.18 (1), p.92-17, Article 92 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 92 |
container_title | Journal of nanobiotechnology |
container_volume | 18 |
creator | Gong, Chunai Yu, Xiaoyan You, Benming Wu, Yan Wang, Rong Han, Lu Wang, Yujie Gao, Shen Yuan, Yongfang |
description | Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis. |
doi_str_mv | 10.1186/s12951-020-00649-8 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_878d51497f4b43ee9106f21c0ea4738c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627415187</galeid><doaj_id>oai_doaj_org_article_878d51497f4b43ee9106f21c0ea4738c</doaj_id><sourcerecordid>A627415187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3</originalsourceid><addsrcrecordid>eNptkluL1DAUx4so7rr6BXyQgk8-dM3JpWlfhGXxMrAieHkOaXrSyTBNxiQV59ub3RnXHZDcT__nR076r6qXQC4BuvZtAtoLaAglDSEt75vuUXUOXMqGgRCPH-zPqmcpbQihlFP-tDpjVPAWJD-v5s_axLBb6wkbo73BWK_3Q3RjPeM8RO1LOOiMY-21DzsdszNbTLUNsc46Tpidn-rtUqYZs06lu1Q7Xw8Ry6k-MvMao97tn1dPrN4mfHFcL6ofH95_v_7U3Hz5uLq-ummM6GVuhJCG0QEoAaCCCdmTEQZuDYBgtEUAlGDLaAVyZJoRZnk3DD2l1hI-sItqdeCOQW_ULrpZx70K2qm7QIiTOlaiOtmNAngvLR84Q-yBtJaCIai5ZJ0prHcH1m4ZZhwN-hz19gR6-sW7tZrCLyVp33WcFcDrIyCGnwumrDZhib7Urygvv0j0BLp_qkmXWzlvQ4GZ2SWjrloqOQjoZFFd_kdV2oizM8GjdSV-kvDmJKFoMv7Ok15SUqtvX0-19KAtjkgpor0vEoi6dZw6OE4Vx6k7x6nbe796-Dz3KX8txv4AWajP-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414759018</pqid></control><display><type>article</type><title>Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Gong, Chunai ; Yu, Xiaoyan ; You, Benming ; Wu, Yan ; Wang, Rong ; Han, Lu ; Wang, Yujie ; Gao, Shen ; Yuan, Yongfang</creator><creatorcontrib>Gong, Chunai ; Yu, Xiaoyan ; You, Benming ; Wu, Yan ; Wang, Rong ; Han, Lu ; Wang, Yujie ; Gao, Shen ; Yuan, Yongfang</creatorcontrib><description>Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis.</description><identifier>ISSN: 1477-3155</identifier><identifier>EISSN: 1477-3155</identifier><identifier>DOI: 10.1186/s12951-020-00649-8</identifier><identifier>PMID: 32546174</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Anthracyclines ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Biomimetic Materials - chemistry ; Biomimetic nanoparticles ; Biomimetics ; Breast cancer ; Breast Neoplasms - pathology ; Cancer metastasis ; Cancer therapies ; Cell adhesion & migration ; Cell Line, Tumor ; Cell Membrane - chemistry ; Cell membranes ; Cell Proliferation - drug effects ; Chemotherapy ; Coatings ; Doxorubicin ; Doxorubicin - chemistry ; Doxorubicin - pharmacokinetics ; Doxorubicin - pharmacology ; Doxorubicin - therapeutic use ; Drug delivery systems ; Efficiency ; Female ; Glycolic acid ; Health aspects ; Hemodialysis ; Hybrid membrane ; Laboratory animals ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - secondary ; Lungs ; Macrophages ; Macrophages - cytology ; Mammary Neoplasms, Experimental ; Membranes ; Metastases ; Metastasis ; Metastasis breast cancer ; Mice ; Multi-target capability ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; Nanoparticles - therapeutic use ; Particle size ; Penicillin ; Polylactide-co-glycolide ; Proteins ; RAW 264.7 Cells ; Tumors</subject><ispartof>Journal of nanobiotechnology, 2020-06, Vol.18 (1), p.92-17, Article 92</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3</citedby><cites>FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3</cites><orcidid>0000-0002-5125-1606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298843/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414759018?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32546174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Chunai</creatorcontrib><creatorcontrib>Yu, Xiaoyan</creatorcontrib><creatorcontrib>You, Benming</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Wang, Yujie</creatorcontrib><creatorcontrib>Gao, Shen</creatorcontrib><creatorcontrib>Yuan, Yongfang</creatorcontrib><title>Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy</title><title>Journal of nanobiotechnology</title><addtitle>J Nanobiotechnology</addtitle><description>Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis.</description><subject>Animals</subject><subject>Anthracyclines</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic nanoparticles</subject><subject>Biomimetics</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer metastasis</subject><subject>Cancer therapies</subject><subject>Cell adhesion & migration</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - chemistry</subject><subject>Cell membranes</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemotherapy</subject><subject>Coatings</subject><subject>Doxorubicin</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacokinetics</subject><subject>Doxorubicin - pharmacology</subject><subject>Doxorubicin - therapeutic use</subject><subject>Drug delivery systems</subject><subject>Efficiency</subject><subject>Female</subject><subject>Glycolic acid</subject><subject>Health aspects</subject><subject>Hemodialysis</subject><subject>Hybrid membrane</subject><subject>Laboratory animals</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - secondary</subject><subject>Lungs</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Mammary Neoplasms, Experimental</subject><subject>Membranes</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Metastasis breast cancer</subject><subject>Mice</subject><subject>Multi-target capability</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>Nanoparticles - therapeutic use</subject><subject>Particle size</subject><subject>Penicillin</subject><subject>Polylactide-co-glycolide</subject><subject>Proteins</subject><subject>RAW 264.7 Cells</subject><subject>Tumors</subject><issn>1477-3155</issn><issn>1477-3155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkluL1DAUx4so7rr6BXyQgk8-dM3JpWlfhGXxMrAieHkOaXrSyTBNxiQV59ub3RnXHZDcT__nR076r6qXQC4BuvZtAtoLaAglDSEt75vuUXUOXMqGgRCPH-zPqmcpbQihlFP-tDpjVPAWJD-v5s_axLBb6wkbo73BWK_3Q3RjPeM8RO1LOOiMY-21DzsdszNbTLUNsc46Tpidn-rtUqYZs06lu1Q7Xw8Ry6k-MvMao97tn1dPrN4mfHFcL6ofH95_v_7U3Hz5uLq-ummM6GVuhJCG0QEoAaCCCdmTEQZuDYBgtEUAlGDLaAVyZJoRZnk3DD2l1hI-sItqdeCOQW_ULrpZx70K2qm7QIiTOlaiOtmNAngvLR84Q-yBtJaCIai5ZJ0prHcH1m4ZZhwN-hz19gR6-sW7tZrCLyVp33WcFcDrIyCGnwumrDZhib7Urygvv0j0BLp_qkmXWzlvQ4GZ2SWjrloqOQjoZFFd_kdV2oizM8GjdSV-kvDmJKFoMv7Ok15SUqtvX0-19KAtjkgpor0vEoi6dZw6OE4Vx6k7x6nbe796-Dz3KX8txv4AWajP-g</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Gong, Chunai</creator><creator>Yu, Xiaoyan</creator><creator>You, Benming</creator><creator>Wu, Yan</creator><creator>Wang, Rong</creator><creator>Han, Lu</creator><creator>Wang, Yujie</creator><creator>Gao, Shen</creator><creator>Yuan, Yongfang</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5125-1606</orcidid></search><sort><creationdate>20200616</creationdate><title>Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy</title><author>Gong, Chunai ; Yu, Xiaoyan ; You, Benming ; Wu, Yan ; Wang, Rong ; Han, Lu ; Wang, Yujie ; Gao, Shen ; Yuan, Yongfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Anthracyclines</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic nanoparticles</topic><topic>Biomimetics</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer metastasis</topic><topic>Cancer therapies</topic><topic>Cell adhesion & migration</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - chemistry</topic><topic>Cell membranes</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemotherapy</topic><topic>Coatings</topic><topic>Doxorubicin</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacokinetics</topic><topic>Doxorubicin - pharmacology</topic><topic>Doxorubicin - therapeutic use</topic><topic>Drug delivery systems</topic><topic>Efficiency</topic><topic>Female</topic><topic>Glycolic acid</topic><topic>Health aspects</topic><topic>Hemodialysis</topic><topic>Hybrid membrane</topic><topic>Laboratory animals</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - secondary</topic><topic>Lungs</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Mammary Neoplasms, Experimental</topic><topic>Membranes</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Metastasis breast cancer</topic><topic>Mice</topic><topic>Multi-target capability</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>Nanoparticles - therapeutic use</topic><topic>Particle size</topic><topic>Penicillin</topic><topic>Polylactide-co-glycolide</topic><topic>Proteins</topic><topic>RAW 264.7 Cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Chunai</creatorcontrib><creatorcontrib>Yu, Xiaoyan</creatorcontrib><creatorcontrib>You, Benming</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Wang, Yujie</creatorcontrib><creatorcontrib>Gao, Shen</creatorcontrib><creatorcontrib>Yuan, Yongfang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Chunai</au><au>Yu, Xiaoyan</au><au>You, Benming</au><au>Wu, Yan</au><au>Wang, Rong</au><au>Han, Lu</au><au>Wang, Yujie</au><au>Gao, Shen</au><au>Yuan, Yongfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy</atitle><jtitle>Journal of nanobiotechnology</jtitle><addtitle>J Nanobiotechnology</addtitle><date>2020-06-16</date><risdate>2020</risdate><volume>18</volume><issue>1</issue><spage>92</spage><epage>17</epage><pages>92-17</pages><artnum>92</artnum><issn>1477-3155</issn><eissn>1477-3155</eissn><abstract>Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32546174</pmid><doi>10.1186/s12951-020-00649-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5125-1606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-3155 |
ispartof | Journal of nanobiotechnology, 2020-06, Vol.18 (1), p.92-17, Article 92 |
issn | 1477-3155 1477-3155 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_878d51497f4b43ee9106f21c0ea4738c |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Animals Anthracyclines Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacokinetics Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Biomimetic Materials - chemistry Biomimetic nanoparticles Biomimetics Breast cancer Breast Neoplasms - pathology Cancer metastasis Cancer therapies Cell adhesion & migration Cell Line, Tumor Cell Membrane - chemistry Cell membranes Cell Proliferation - drug effects Chemotherapy Coatings Doxorubicin Doxorubicin - chemistry Doxorubicin - pharmacokinetics Doxorubicin - pharmacology Doxorubicin - therapeutic use Drug delivery systems Efficiency Female Glycolic acid Health aspects Hemodialysis Hybrid membrane Laboratory animals Lung cancer Lung Neoplasms - drug therapy Lung Neoplasms - secondary Lungs Macrophages Macrophages - cytology Mammary Neoplasms, Experimental Membranes Metastases Metastasis Metastasis breast cancer Mice Multi-target capability Nanoparticles Nanoparticles - chemistry Nanoparticles - metabolism Nanoparticles - therapeutic use Particle size Penicillin Polylactide-co-glycolide Proteins RAW 264.7 Cells Tumors |
title | Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage-cancer%20hybrid%20membrane-coated%20nanoparticles%20for%20targeting%20lung%20metastasis%20in%20breast%20cancer%20therapy&rft.jtitle=Journal%20of%20nanobiotechnology&rft.au=Gong,%20Chunai&rft.date=2020-06-16&rft.volume=18&rft.issue=1&rft.spage=92&rft.epage=17&rft.pages=92-17&rft.artnum=92&rft.issn=1477-3155&rft.eissn=1477-3155&rft_id=info:doi/10.1186/s12951-020-00649-8&rft_dat=%3Cgale_doaj_%3EA627415187%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414759018&rft_id=info:pmid/32546174&rft_galeid=A627415187&rfr_iscdi=true |