Loading…

Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy

Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanobiotechnology 2020-06, Vol.18 (1), p.92-17, Article 92
Main Authors: Gong, Chunai, Yu, Xiaoyan, You, Benming, Wu, Yan, Wang, Rong, Han, Lu, Wang, Yujie, Gao, Shen, Yuan, Yongfang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3
cites cdi_FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3
container_end_page 17
container_issue 1
container_start_page 92
container_title Journal of nanobiotechnology
container_volume 18
creator Gong, Chunai
Yu, Xiaoyan
You, Benming
Wu, Yan
Wang, Rong
Han, Lu
Wang, Yujie
Gao, Shen
Yuan, Yongfang
description Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis.
doi_str_mv 10.1186/s12951-020-00649-8
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_878d51497f4b43ee9106f21c0ea4738c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627415187</galeid><doaj_id>oai_doaj_org_article_878d51497f4b43ee9106f21c0ea4738c</doaj_id><sourcerecordid>A627415187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3</originalsourceid><addsrcrecordid>eNptkluL1DAUx4so7rr6BXyQgk8-dM3JpWlfhGXxMrAieHkOaXrSyTBNxiQV59ub3RnXHZDcT__nR076r6qXQC4BuvZtAtoLaAglDSEt75vuUXUOXMqGgRCPH-zPqmcpbQihlFP-tDpjVPAWJD-v5s_axLBb6wkbo73BWK_3Q3RjPeM8RO1LOOiMY-21DzsdszNbTLUNsc46Tpidn-rtUqYZs06lu1Q7Xw8Ry6k-MvMao97tn1dPrN4mfHFcL6ofH95_v_7U3Hz5uLq-ummM6GVuhJCG0QEoAaCCCdmTEQZuDYBgtEUAlGDLaAVyZJoRZnk3DD2l1hI-sItqdeCOQW_ULrpZx70K2qm7QIiTOlaiOtmNAngvLR84Q-yBtJaCIai5ZJ0prHcH1m4ZZhwN-hz19gR6-sW7tZrCLyVp33WcFcDrIyCGnwumrDZhib7Urygvv0j0BLp_qkmXWzlvQ4GZ2SWjrloqOQjoZFFd_kdV2oizM8GjdSV-kvDmJKFoMv7Ok15SUqtvX0-19KAtjkgpor0vEoi6dZw6OE4Vx6k7x6nbe796-Dz3KX8txv4AWajP-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414759018</pqid></control><display><type>article</type><title>Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Gong, Chunai ; Yu, Xiaoyan ; You, Benming ; Wu, Yan ; Wang, Rong ; Han, Lu ; Wang, Yujie ; Gao, Shen ; Yuan, Yongfang</creator><creatorcontrib>Gong, Chunai ; Yu, Xiaoyan ; You, Benming ; Wu, Yan ; Wang, Rong ; Han, Lu ; Wang, Yujie ; Gao, Shen ; Yuan, Yongfang</creatorcontrib><description>Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis.</description><identifier>ISSN: 1477-3155</identifier><identifier>EISSN: 1477-3155</identifier><identifier>DOI: 10.1186/s12951-020-00649-8</identifier><identifier>PMID: 32546174</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Anthracyclines ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Biomimetic Materials - chemistry ; Biomimetic nanoparticles ; Biomimetics ; Breast cancer ; Breast Neoplasms - pathology ; Cancer metastasis ; Cancer therapies ; Cell adhesion &amp; migration ; Cell Line, Tumor ; Cell Membrane - chemistry ; Cell membranes ; Cell Proliferation - drug effects ; Chemotherapy ; Coatings ; Doxorubicin ; Doxorubicin - chemistry ; Doxorubicin - pharmacokinetics ; Doxorubicin - pharmacology ; Doxorubicin - therapeutic use ; Drug delivery systems ; Efficiency ; Female ; Glycolic acid ; Health aspects ; Hemodialysis ; Hybrid membrane ; Laboratory animals ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - secondary ; Lungs ; Macrophages ; Macrophages - cytology ; Mammary Neoplasms, Experimental ; Membranes ; Metastases ; Metastasis ; Metastasis breast cancer ; Mice ; Multi-target capability ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; Nanoparticles - therapeutic use ; Particle size ; Penicillin ; Polylactide-co-glycolide ; Proteins ; RAW 264.7 Cells ; Tumors</subject><ispartof>Journal of nanobiotechnology, 2020-06, Vol.18 (1), p.92-17, Article 92</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3</citedby><cites>FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3</cites><orcidid>0000-0002-5125-1606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298843/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414759018?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32546174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Chunai</creatorcontrib><creatorcontrib>Yu, Xiaoyan</creatorcontrib><creatorcontrib>You, Benming</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Wang, Yujie</creatorcontrib><creatorcontrib>Gao, Shen</creatorcontrib><creatorcontrib>Yuan, Yongfang</creatorcontrib><title>Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy</title><title>Journal of nanobiotechnology</title><addtitle>J Nanobiotechnology</addtitle><description>Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis.</description><subject>Animals</subject><subject>Anthracyclines</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic nanoparticles</subject><subject>Biomimetics</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer metastasis</subject><subject>Cancer therapies</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - chemistry</subject><subject>Cell membranes</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemotherapy</subject><subject>Coatings</subject><subject>Doxorubicin</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacokinetics</subject><subject>Doxorubicin - pharmacology</subject><subject>Doxorubicin - therapeutic use</subject><subject>Drug delivery systems</subject><subject>Efficiency</subject><subject>Female</subject><subject>Glycolic acid</subject><subject>Health aspects</subject><subject>Hemodialysis</subject><subject>Hybrid membrane</subject><subject>Laboratory animals</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - secondary</subject><subject>Lungs</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Mammary Neoplasms, Experimental</subject><subject>Membranes</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Metastasis breast cancer</subject><subject>Mice</subject><subject>Multi-target capability</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>Nanoparticles - therapeutic use</subject><subject>Particle size</subject><subject>Penicillin</subject><subject>Polylactide-co-glycolide</subject><subject>Proteins</subject><subject>RAW 264.7 Cells</subject><subject>Tumors</subject><issn>1477-3155</issn><issn>1477-3155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkluL1DAUx4so7rr6BXyQgk8-dM3JpWlfhGXxMrAieHkOaXrSyTBNxiQV59ub3RnXHZDcT__nR076r6qXQC4BuvZtAtoLaAglDSEt75vuUXUOXMqGgRCPH-zPqmcpbQihlFP-tDpjVPAWJD-v5s_axLBb6wkbo73BWK_3Q3RjPeM8RO1LOOiMY-21DzsdszNbTLUNsc46Tpidn-rtUqYZs06lu1Q7Xw8Ry6k-MvMao97tn1dPrN4mfHFcL6ofH95_v_7U3Hz5uLq-ummM6GVuhJCG0QEoAaCCCdmTEQZuDYBgtEUAlGDLaAVyZJoRZnk3DD2l1hI-sItqdeCOQW_ULrpZx70K2qm7QIiTOlaiOtmNAngvLR84Q-yBtJaCIai5ZJ0prHcH1m4ZZhwN-hz19gR6-sW7tZrCLyVp33WcFcDrIyCGnwumrDZhib7Urygvv0j0BLp_qkmXWzlvQ4GZ2SWjrloqOQjoZFFd_kdV2oizM8GjdSV-kvDmJKFoMv7Ok15SUqtvX0-19KAtjkgpor0vEoi6dZw6OE4Vx6k7x6nbe796-Dz3KX8txv4AWajP-g</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Gong, Chunai</creator><creator>Yu, Xiaoyan</creator><creator>You, Benming</creator><creator>Wu, Yan</creator><creator>Wang, Rong</creator><creator>Han, Lu</creator><creator>Wang, Yujie</creator><creator>Gao, Shen</creator><creator>Yuan, Yongfang</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5125-1606</orcidid></search><sort><creationdate>20200616</creationdate><title>Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy</title><author>Gong, Chunai ; Yu, Xiaoyan ; You, Benming ; Wu, Yan ; Wang, Rong ; Han, Lu ; Wang, Yujie ; Gao, Shen ; Yuan, Yongfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Anthracyclines</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic nanoparticles</topic><topic>Biomimetics</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer metastasis</topic><topic>Cancer therapies</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - chemistry</topic><topic>Cell membranes</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemotherapy</topic><topic>Coatings</topic><topic>Doxorubicin</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacokinetics</topic><topic>Doxorubicin - pharmacology</topic><topic>Doxorubicin - therapeutic use</topic><topic>Drug delivery systems</topic><topic>Efficiency</topic><topic>Female</topic><topic>Glycolic acid</topic><topic>Health aspects</topic><topic>Hemodialysis</topic><topic>Hybrid membrane</topic><topic>Laboratory animals</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - secondary</topic><topic>Lungs</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Mammary Neoplasms, Experimental</topic><topic>Membranes</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Metastasis breast cancer</topic><topic>Mice</topic><topic>Multi-target capability</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>Nanoparticles - therapeutic use</topic><topic>Particle size</topic><topic>Penicillin</topic><topic>Polylactide-co-glycolide</topic><topic>Proteins</topic><topic>RAW 264.7 Cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Chunai</creatorcontrib><creatorcontrib>Yu, Xiaoyan</creatorcontrib><creatorcontrib>You, Benming</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Wang, Yujie</creatorcontrib><creatorcontrib>Gao, Shen</creatorcontrib><creatorcontrib>Yuan, Yongfang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Chunai</au><au>Yu, Xiaoyan</au><au>You, Benming</au><au>Wu, Yan</au><au>Wang, Rong</au><au>Han, Lu</au><au>Wang, Yujie</au><au>Gao, Shen</au><au>Yuan, Yongfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy</atitle><jtitle>Journal of nanobiotechnology</jtitle><addtitle>J Nanobiotechnology</addtitle><date>2020-06-16</date><risdate>2020</risdate><volume>18</volume><issue>1</issue><spage>92</spage><epage>17</epage><pages>92-17</pages><artnum>92</artnum><issn>1477-3155</issn><eissn>1477-3155</eissn><abstract>Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32546174</pmid><doi>10.1186/s12951-020-00649-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5125-1606</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-3155
ispartof Journal of nanobiotechnology, 2020-06, Vol.18 (1), p.92-17, Article 92
issn 1477-3155
1477-3155
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_878d51497f4b43ee9106f21c0ea4738c
source Publicly Available Content (ProQuest); PubMed Central
subjects Animals
Anthracyclines
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacokinetics
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Biomimetic Materials - chemistry
Biomimetic nanoparticles
Biomimetics
Breast cancer
Breast Neoplasms - pathology
Cancer metastasis
Cancer therapies
Cell adhesion & migration
Cell Line, Tumor
Cell Membrane - chemistry
Cell membranes
Cell Proliferation - drug effects
Chemotherapy
Coatings
Doxorubicin
Doxorubicin - chemistry
Doxorubicin - pharmacokinetics
Doxorubicin - pharmacology
Doxorubicin - therapeutic use
Drug delivery systems
Efficiency
Female
Glycolic acid
Health aspects
Hemodialysis
Hybrid membrane
Laboratory animals
Lung cancer
Lung Neoplasms - drug therapy
Lung Neoplasms - secondary
Lungs
Macrophages
Macrophages - cytology
Mammary Neoplasms, Experimental
Membranes
Metastases
Metastasis
Metastasis breast cancer
Mice
Multi-target capability
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - metabolism
Nanoparticles - therapeutic use
Particle size
Penicillin
Polylactide-co-glycolide
Proteins
RAW 264.7 Cells
Tumors
title Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage-cancer%20hybrid%20membrane-coated%20nanoparticles%20for%20targeting%20lung%20metastasis%20in%20breast%20cancer%20therapy&rft.jtitle=Journal%20of%20nanobiotechnology&rft.au=Gong,%20Chunai&rft.date=2020-06-16&rft.volume=18&rft.issue=1&rft.spage=92&rft.epage=17&rft.pages=92-17&rft.artnum=92&rft.issn=1477-3155&rft.eissn=1477-3155&rft_id=info:doi/10.1186/s12951-020-00649-8&rft_dat=%3Cgale_doaj_%3EA627415187%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-557c32b120112535790d1b4fc115326e11e71fe7165e4e3a303f48bb922ff04b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414759018&rft_id=info:pmid/32546174&rft_galeid=A627415187&rfr_iscdi=true