Loading…
Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects
The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chi...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2023-02, Vol.28 (3), p.1473 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33 |
container_end_page | |
container_issue | 3 |
container_start_page | 1473 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 28 |
creator | Fan, Peng Zeng, Yanbo Zaldivar-Silva, Dionisio Agüero, Lissette Wang, Shige |
description | The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chitosan (CS) absorbs red blood cells and activates platelets to promote hemostasis. Benefiting from these desired properties, the hemostatic application of CS hydrogels is attracting ever-increasing research attention. This paper reviews the recent research progress of CS-based hemostatic hydrogels and their advantageous characteristics compared to traditional hemostatic materials. The effects of the hemostatic mechanism, effects of deacetylation degree, relative molecular mass, and chemical modification on the hemostatic performance of CS hydrogels are summarized. Meanwhile, some typical applications of CS hydrogels are introduced to provide references for the preparation of efficient hemostatic hydrogels. Finally, the future perspectives of CS-based hemostatic hydrogels are presented. |
doi_str_mv | 10.3390/molecules28031473 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_879ac481eaba46b38b9602822fe5871a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743211814</galeid><doaj_id>oai_doaj_org_article_879ac481eaba46b38b9602822fe5871a</doaj_id><sourcerecordid>A743211814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33</originalsourceid><addsrcrecordid>eNptUk2P0zAQjRCI_YAfwAVF4sKhWfwVf3BAKtVCV1oEh0UcLceZtK4SO9gJ0v57XLosW0CW7NH4vTd6M1MULzC6oFShN0Powc49JCIRxUzQR8UpZgRVFDH1-EF8UpyltEOIYIbrp8UJ5ULgHJ8W31ZbN4VkfPXeJGjLNQwhTWZytlzftjFsoE9vy5stlKvgLYzTovwEdmu8S8OiXI5j72xGB78ojW_LLzGkEeyUnhVPOtMneH73nhdfP1zerNbV9eePV6vldWWZQlPFa2sZw9w0FCgismmwqIUEaSnjitTM2k7lC8sWN7wliEMnpQXbtRxMR-l5cXXQbYPZ6TG6wcRbHYzTvxIhbrSJ2U0PWgplLJMYTGMYb6hsFM8lCemglgKbrPXuoDXOzQCtBT9F0x-JHv94t9Wb8EMrRbAgIgu8vhOI4fsMadKDSxb63ngIc9JEiJpjhsQe-uov6C7M0edW7VFM5TlJ_Ae1MdmA813Ide1eVC8FowRjiVlGXfwHlU8Lg7PBQ-dy_oiADwSbx5UidPceMdL7zdL_bFbmvHzYnHvG71WiPwH_uspT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774941581</pqid></control><display><type>article</type><title>Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fan, Peng ; Zeng, Yanbo ; Zaldivar-Silva, Dionisio ; Agüero, Lissette ; Wang, Shige</creator><creatorcontrib>Fan, Peng ; Zeng, Yanbo ; Zaldivar-Silva, Dionisio ; Agüero, Lissette ; Wang, Shige</creatorcontrib><description>The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chitosan (CS) absorbs red blood cells and activates platelets to promote hemostasis. Benefiting from these desired properties, the hemostatic application of CS hydrogels is attracting ever-increasing research attention. This paper reviews the recent research progress of CS-based hemostatic hydrogels and their advantageous characteristics compared to traditional hemostatic materials. The effects of the hemostatic mechanism, effects of deacetylation degree, relative molecular mass, and chemical modification on the hemostatic performance of CS hydrogels are summarized. Meanwhile, some typical applications of CS hydrogels are introduced to provide references for the preparation of efficient hemostatic hydrogels. Finally, the future perspectives of CS-based hemostatic hydrogels are presented.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28031473</identifier><identifier>PMID: 36771141</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesives ; Bacterial infections ; Biocompatibility ; Blood platelets ; Blood vessels ; Chemical modification ; Chemical properties ; Chitin ; Chitosan ; Chitosan - chemistry ; Chitosan - pharmacology ; Chitosan - therapeutic use ; Deacetylation ; Erythrocytes ; Gels (Pharmacy) ; Hemoglobin ; Hemorrhage - drug therapy ; Hemostasis ; Hemostatics ; Hemostatics - chemistry ; Hemostatics - pharmacology ; Hemostatics - therapeutic use ; Humans ; hydrogel ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Hydrogels - therapeutic use ; Infections ; Mechanical properties ; Physiology ; Polymers ; Production processes ; Review ; self-healing ; Wound healing</subject><ispartof>Molecules (Basel, Switzerland), 2023-02, Vol.28 (3), p.1473</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33</citedby><cites>FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33</cites><orcidid>0000-0003-0644-5011 ; 0000-0002-7639-6035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774941581/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774941581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36771141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Peng</creatorcontrib><creatorcontrib>Zeng, Yanbo</creatorcontrib><creatorcontrib>Zaldivar-Silva, Dionisio</creatorcontrib><creatorcontrib>Agüero, Lissette</creatorcontrib><creatorcontrib>Wang, Shige</creatorcontrib><title>Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chitosan (CS) absorbs red blood cells and activates platelets to promote hemostasis. Benefiting from these desired properties, the hemostatic application of CS hydrogels is attracting ever-increasing research attention. This paper reviews the recent research progress of CS-based hemostatic hydrogels and their advantageous characteristics compared to traditional hemostatic materials. The effects of the hemostatic mechanism, effects of deacetylation degree, relative molecular mass, and chemical modification on the hemostatic performance of CS hydrogels are summarized. Meanwhile, some typical applications of CS hydrogels are introduced to provide references for the preparation of efficient hemostatic hydrogels. Finally, the future perspectives of CS-based hemostatic hydrogels are presented.</description><subject>Adhesives</subject><subject>Bacterial infections</subject><subject>Biocompatibility</subject><subject>Blood platelets</subject><subject>Blood vessels</subject><subject>Chemical modification</subject><subject>Chemical properties</subject><subject>Chitin</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - pharmacology</subject><subject>Chitosan - therapeutic use</subject><subject>Deacetylation</subject><subject>Erythrocytes</subject><subject>Gels (Pharmacy)</subject><subject>Hemoglobin</subject><subject>Hemorrhage - drug therapy</subject><subject>Hemostasis</subject><subject>Hemostatics</subject><subject>Hemostatics - chemistry</subject><subject>Hemostatics - pharmacology</subject><subject>Hemostatics - therapeutic use</subject><subject>Humans</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Hydrogels - therapeutic use</subject><subject>Infections</subject><subject>Mechanical properties</subject><subject>Physiology</subject><subject>Polymers</subject><subject>Production processes</subject><subject>Review</subject><subject>self-healing</subject><subject>Wound healing</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk2P0zAQjRCI_YAfwAVF4sKhWfwVf3BAKtVCV1oEh0UcLceZtK4SO9gJ0v57XLosW0CW7NH4vTd6M1MULzC6oFShN0Powc49JCIRxUzQR8UpZgRVFDH1-EF8UpyltEOIYIbrp8UJ5ULgHJ8W31ZbN4VkfPXeJGjLNQwhTWZytlzftjFsoE9vy5stlKvgLYzTovwEdmu8S8OiXI5j72xGB78ojW_LLzGkEeyUnhVPOtMneH73nhdfP1zerNbV9eePV6vldWWZQlPFa2sZw9w0FCgismmwqIUEaSnjitTM2k7lC8sWN7wliEMnpQXbtRxMR-l5cXXQbYPZ6TG6wcRbHYzTvxIhbrSJ2U0PWgplLJMYTGMYb6hsFM8lCemglgKbrPXuoDXOzQCtBT9F0x-JHv94t9Wb8EMrRbAgIgu8vhOI4fsMadKDSxb63ngIc9JEiJpjhsQe-uov6C7M0edW7VFM5TlJ_Ae1MdmA813Ide1eVC8FowRjiVlGXfwHlU8Lg7PBQ-dy_oiADwSbx5UidPceMdL7zdL_bFbmvHzYnHvG71WiPwH_uspT</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Fan, Peng</creator><creator>Zeng, Yanbo</creator><creator>Zaldivar-Silva, Dionisio</creator><creator>Agüero, Lissette</creator><creator>Wang, Shige</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0644-5011</orcidid><orcidid>https://orcid.org/0000-0002-7639-6035</orcidid></search><sort><creationdate>20230203</creationdate><title>Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects</title><author>Fan, Peng ; Zeng, Yanbo ; Zaldivar-Silva, Dionisio ; Agüero, Lissette ; Wang, Shige</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adhesives</topic><topic>Bacterial infections</topic><topic>Biocompatibility</topic><topic>Blood platelets</topic><topic>Blood vessels</topic><topic>Chemical modification</topic><topic>Chemical properties</topic><topic>Chitin</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - pharmacology</topic><topic>Chitosan - therapeutic use</topic><topic>Deacetylation</topic><topic>Erythrocytes</topic><topic>Gels (Pharmacy)</topic><topic>Hemoglobin</topic><topic>Hemorrhage - drug therapy</topic><topic>Hemostasis</topic><topic>Hemostatics</topic><topic>Hemostatics - chemistry</topic><topic>Hemostatics - pharmacology</topic><topic>Hemostatics - therapeutic use</topic><topic>Humans</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Hydrogels - therapeutic use</topic><topic>Infections</topic><topic>Mechanical properties</topic><topic>Physiology</topic><topic>Polymers</topic><topic>Production processes</topic><topic>Review</topic><topic>self-healing</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Peng</creatorcontrib><creatorcontrib>Zeng, Yanbo</creatorcontrib><creatorcontrib>Zaldivar-Silva, Dionisio</creatorcontrib><creatorcontrib>Agüero, Lissette</creatorcontrib><creatorcontrib>Wang, Shige</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Peng</au><au>Zeng, Yanbo</au><au>Zaldivar-Silva, Dionisio</au><au>Agüero, Lissette</au><au>Wang, Shige</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2023-02-03</date><risdate>2023</risdate><volume>28</volume><issue>3</issue><spage>1473</spage><pages>1473-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chitosan (CS) absorbs red blood cells and activates platelets to promote hemostasis. Benefiting from these desired properties, the hemostatic application of CS hydrogels is attracting ever-increasing research attention. This paper reviews the recent research progress of CS-based hemostatic hydrogels and their advantageous characteristics compared to traditional hemostatic materials. The effects of the hemostatic mechanism, effects of deacetylation degree, relative molecular mass, and chemical modification on the hemostatic performance of CS hydrogels are summarized. Meanwhile, some typical applications of CS hydrogels are introduced to provide references for the preparation of efficient hemostatic hydrogels. Finally, the future perspectives of CS-based hemostatic hydrogels are presented.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36771141</pmid><doi>10.3390/molecules28031473</doi><orcidid>https://orcid.org/0000-0003-0644-5011</orcidid><orcidid>https://orcid.org/0000-0002-7639-6035</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2023-02, Vol.28 (3), p.1473 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_879ac481eaba46b38b9602822fe5871a |
source | Publicly Available Content Database; PubMed Central |
subjects | Adhesives Bacterial infections Biocompatibility Blood platelets Blood vessels Chemical modification Chemical properties Chitin Chitosan Chitosan - chemistry Chitosan - pharmacology Chitosan - therapeutic use Deacetylation Erythrocytes Gels (Pharmacy) Hemoglobin Hemorrhage - drug therapy Hemostasis Hemostatics Hemostatics - chemistry Hemostatics - pharmacology Hemostatics - therapeutic use Humans hydrogel Hydrogels Hydrogels - chemistry Hydrogels - pharmacology Hydrogels - therapeutic use Infections Mechanical properties Physiology Polymers Production processes Review self-healing Wound healing |
title | Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan-Based%20Hemostatic%20Hydrogels:%20The%20Concept,%20Mechanism,%20Application,%20and%20Prospects&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Fan,%20Peng&rft.date=2023-02-03&rft.volume=28&rft.issue=3&rft.spage=1473&rft.pages=1473-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28031473&rft_dat=%3Cgale_doaj_%3EA743211814%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774941581&rft_id=info:pmid/36771141&rft_galeid=A743211814&rfr_iscdi=true |