Loading…

Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects

The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chi...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-02, Vol.28 (3), p.1473
Main Authors: Fan, Peng, Zeng, Yanbo, Zaldivar-Silva, Dionisio, Agüero, Lissette, Wang, Shige
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33
cites cdi_FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33
container_end_page
container_issue 3
container_start_page 1473
container_title Molecules (Basel, Switzerland)
container_volume 28
creator Fan, Peng
Zeng, Yanbo
Zaldivar-Silva, Dionisio
Agüero, Lissette
Wang, Shige
description The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chitosan (CS) absorbs red blood cells and activates platelets to promote hemostasis. Benefiting from these desired properties, the hemostatic application of CS hydrogels is attracting ever-increasing research attention. This paper reviews the recent research progress of CS-based hemostatic hydrogels and their advantageous characteristics compared to traditional hemostatic materials. The effects of the hemostatic mechanism, effects of deacetylation degree, relative molecular mass, and chemical modification on the hemostatic performance of CS hydrogels are summarized. Meanwhile, some typical applications of CS hydrogels are introduced to provide references for the preparation of efficient hemostatic hydrogels. Finally, the future perspectives of CS-based hemostatic hydrogels are presented.
doi_str_mv 10.3390/molecules28031473
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_879ac481eaba46b38b9602822fe5871a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743211814</galeid><doaj_id>oai_doaj_org_article_879ac481eaba46b38b9602822fe5871a</doaj_id><sourcerecordid>A743211814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33</originalsourceid><addsrcrecordid>eNptUk2P0zAQjRCI_YAfwAVF4sKhWfwVf3BAKtVCV1oEh0UcLceZtK4SO9gJ0v57XLosW0CW7NH4vTd6M1MULzC6oFShN0Powc49JCIRxUzQR8UpZgRVFDH1-EF8UpyltEOIYIbrp8UJ5ULgHJ8W31ZbN4VkfPXeJGjLNQwhTWZytlzftjFsoE9vy5stlKvgLYzTovwEdmu8S8OiXI5j72xGB78ojW_LLzGkEeyUnhVPOtMneH73nhdfP1zerNbV9eePV6vldWWZQlPFa2sZw9w0FCgismmwqIUEaSnjitTM2k7lC8sWN7wliEMnpQXbtRxMR-l5cXXQbYPZ6TG6wcRbHYzTvxIhbrSJ2U0PWgplLJMYTGMYb6hsFM8lCemglgKbrPXuoDXOzQCtBT9F0x-JHv94t9Wb8EMrRbAgIgu8vhOI4fsMadKDSxb63ngIc9JEiJpjhsQe-uov6C7M0edW7VFM5TlJ_Ae1MdmA813Ide1eVC8FowRjiVlGXfwHlU8Lg7PBQ-dy_oiADwSbx5UidPceMdL7zdL_bFbmvHzYnHvG71WiPwH_uspT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774941581</pqid></control><display><type>article</type><title>Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fan, Peng ; Zeng, Yanbo ; Zaldivar-Silva, Dionisio ; Agüero, Lissette ; Wang, Shige</creator><creatorcontrib>Fan, Peng ; Zeng, Yanbo ; Zaldivar-Silva, Dionisio ; Agüero, Lissette ; Wang, Shige</creatorcontrib><description>The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chitosan (CS) absorbs red blood cells and activates platelets to promote hemostasis. Benefiting from these desired properties, the hemostatic application of CS hydrogels is attracting ever-increasing research attention. This paper reviews the recent research progress of CS-based hemostatic hydrogels and their advantageous characteristics compared to traditional hemostatic materials. The effects of the hemostatic mechanism, effects of deacetylation degree, relative molecular mass, and chemical modification on the hemostatic performance of CS hydrogels are summarized. Meanwhile, some typical applications of CS hydrogels are introduced to provide references for the preparation of efficient hemostatic hydrogels. Finally, the future perspectives of CS-based hemostatic hydrogels are presented.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28031473</identifier><identifier>PMID: 36771141</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesives ; Bacterial infections ; Biocompatibility ; Blood platelets ; Blood vessels ; Chemical modification ; Chemical properties ; Chitin ; Chitosan ; Chitosan - chemistry ; Chitosan - pharmacology ; Chitosan - therapeutic use ; Deacetylation ; Erythrocytes ; Gels (Pharmacy) ; Hemoglobin ; Hemorrhage - drug therapy ; Hemostasis ; Hemostatics ; Hemostatics - chemistry ; Hemostatics - pharmacology ; Hemostatics - therapeutic use ; Humans ; hydrogel ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Hydrogels - therapeutic use ; Infections ; Mechanical properties ; Physiology ; Polymers ; Production processes ; Review ; self-healing ; Wound healing</subject><ispartof>Molecules (Basel, Switzerland), 2023-02, Vol.28 (3), p.1473</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33</citedby><cites>FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33</cites><orcidid>0000-0003-0644-5011 ; 0000-0002-7639-6035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774941581/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774941581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36771141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Peng</creatorcontrib><creatorcontrib>Zeng, Yanbo</creatorcontrib><creatorcontrib>Zaldivar-Silva, Dionisio</creatorcontrib><creatorcontrib>Agüero, Lissette</creatorcontrib><creatorcontrib>Wang, Shige</creatorcontrib><title>Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chitosan (CS) absorbs red blood cells and activates platelets to promote hemostasis. Benefiting from these desired properties, the hemostatic application of CS hydrogels is attracting ever-increasing research attention. This paper reviews the recent research progress of CS-based hemostatic hydrogels and their advantageous characteristics compared to traditional hemostatic materials. The effects of the hemostatic mechanism, effects of deacetylation degree, relative molecular mass, and chemical modification on the hemostatic performance of CS hydrogels are summarized. Meanwhile, some typical applications of CS hydrogels are introduced to provide references for the preparation of efficient hemostatic hydrogels. Finally, the future perspectives of CS-based hemostatic hydrogels are presented.</description><subject>Adhesives</subject><subject>Bacterial infections</subject><subject>Biocompatibility</subject><subject>Blood platelets</subject><subject>Blood vessels</subject><subject>Chemical modification</subject><subject>Chemical properties</subject><subject>Chitin</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - pharmacology</subject><subject>Chitosan - therapeutic use</subject><subject>Deacetylation</subject><subject>Erythrocytes</subject><subject>Gels (Pharmacy)</subject><subject>Hemoglobin</subject><subject>Hemorrhage - drug therapy</subject><subject>Hemostasis</subject><subject>Hemostatics</subject><subject>Hemostatics - chemistry</subject><subject>Hemostatics - pharmacology</subject><subject>Hemostatics - therapeutic use</subject><subject>Humans</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Hydrogels - therapeutic use</subject><subject>Infections</subject><subject>Mechanical properties</subject><subject>Physiology</subject><subject>Polymers</subject><subject>Production processes</subject><subject>Review</subject><subject>self-healing</subject><subject>Wound healing</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk2P0zAQjRCI_YAfwAVF4sKhWfwVf3BAKtVCV1oEh0UcLceZtK4SO9gJ0v57XLosW0CW7NH4vTd6M1MULzC6oFShN0Powc49JCIRxUzQR8UpZgRVFDH1-EF8UpyltEOIYIbrp8UJ5ULgHJ8W31ZbN4VkfPXeJGjLNQwhTWZytlzftjFsoE9vy5stlKvgLYzTovwEdmu8S8OiXI5j72xGB78ojW_LLzGkEeyUnhVPOtMneH73nhdfP1zerNbV9eePV6vldWWZQlPFa2sZw9w0FCgismmwqIUEaSnjitTM2k7lC8sWN7wliEMnpQXbtRxMR-l5cXXQbYPZ6TG6wcRbHYzTvxIhbrSJ2U0PWgplLJMYTGMYb6hsFM8lCemglgKbrPXuoDXOzQCtBT9F0x-JHv94t9Wb8EMrRbAgIgu8vhOI4fsMadKDSxb63ngIc9JEiJpjhsQe-uov6C7M0edW7VFM5TlJ_Ae1MdmA813Ide1eVC8FowRjiVlGXfwHlU8Lg7PBQ-dy_oiADwSbx5UidPceMdL7zdL_bFbmvHzYnHvG71WiPwH_uspT</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Fan, Peng</creator><creator>Zeng, Yanbo</creator><creator>Zaldivar-Silva, Dionisio</creator><creator>Agüero, Lissette</creator><creator>Wang, Shige</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0644-5011</orcidid><orcidid>https://orcid.org/0000-0002-7639-6035</orcidid></search><sort><creationdate>20230203</creationdate><title>Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects</title><author>Fan, Peng ; Zeng, Yanbo ; Zaldivar-Silva, Dionisio ; Agüero, Lissette ; Wang, Shige</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adhesives</topic><topic>Bacterial infections</topic><topic>Biocompatibility</topic><topic>Blood platelets</topic><topic>Blood vessels</topic><topic>Chemical modification</topic><topic>Chemical properties</topic><topic>Chitin</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - pharmacology</topic><topic>Chitosan - therapeutic use</topic><topic>Deacetylation</topic><topic>Erythrocytes</topic><topic>Gels (Pharmacy)</topic><topic>Hemoglobin</topic><topic>Hemorrhage - drug therapy</topic><topic>Hemostasis</topic><topic>Hemostatics</topic><topic>Hemostatics - chemistry</topic><topic>Hemostatics - pharmacology</topic><topic>Hemostatics - therapeutic use</topic><topic>Humans</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Hydrogels - therapeutic use</topic><topic>Infections</topic><topic>Mechanical properties</topic><topic>Physiology</topic><topic>Polymers</topic><topic>Production processes</topic><topic>Review</topic><topic>self-healing</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Peng</creatorcontrib><creatorcontrib>Zeng, Yanbo</creatorcontrib><creatorcontrib>Zaldivar-Silva, Dionisio</creatorcontrib><creatorcontrib>Agüero, Lissette</creatorcontrib><creatorcontrib>Wang, Shige</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Peng</au><au>Zeng, Yanbo</au><au>Zaldivar-Silva, Dionisio</au><au>Agüero, Lissette</au><au>Wang, Shige</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2023-02-03</date><risdate>2023</risdate><volume>28</volume><issue>3</issue><spage>1473</spage><pages>1473-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chitosan (CS) absorbs red blood cells and activates platelets to promote hemostasis. Benefiting from these desired properties, the hemostatic application of CS hydrogels is attracting ever-increasing research attention. This paper reviews the recent research progress of CS-based hemostatic hydrogels and their advantageous characteristics compared to traditional hemostatic materials. The effects of the hemostatic mechanism, effects of deacetylation degree, relative molecular mass, and chemical modification on the hemostatic performance of CS hydrogels are summarized. Meanwhile, some typical applications of CS hydrogels are introduced to provide references for the preparation of efficient hemostatic hydrogels. Finally, the future perspectives of CS-based hemostatic hydrogels are presented.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36771141</pmid><doi>10.3390/molecules28031473</doi><orcidid>https://orcid.org/0000-0003-0644-5011</orcidid><orcidid>https://orcid.org/0000-0002-7639-6035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2023-02, Vol.28 (3), p.1473
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_879ac481eaba46b38b9602822fe5871a
source Publicly Available Content Database; PubMed Central
subjects Adhesives
Bacterial infections
Biocompatibility
Blood platelets
Blood vessels
Chemical modification
Chemical properties
Chitin
Chitosan
Chitosan - chemistry
Chitosan - pharmacology
Chitosan - therapeutic use
Deacetylation
Erythrocytes
Gels (Pharmacy)
Hemoglobin
Hemorrhage - drug therapy
Hemostasis
Hemostatics
Hemostatics - chemistry
Hemostatics - pharmacology
Hemostatics - therapeutic use
Humans
hydrogel
Hydrogels
Hydrogels - chemistry
Hydrogels - pharmacology
Hydrogels - therapeutic use
Infections
Mechanical properties
Physiology
Polymers
Production processes
Review
self-healing
Wound healing
title Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan-Based%20Hemostatic%20Hydrogels:%20The%20Concept,%20Mechanism,%20Application,%20and%20Prospects&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Fan,%20Peng&rft.date=2023-02-03&rft.volume=28&rft.issue=3&rft.spage=1473&rft.pages=1473-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28031473&rft_dat=%3Cgale_doaj_%3EA743211814%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-65cc4416ab3e3028bb17578e8c3469254ccf94cc18d1b6d206ef88cecfd6eaf33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774941581&rft_id=info:pmid/36771141&rft_galeid=A743211814&rfr_iscdi=true