Loading…

A Compact RF Energy Harvesting Wireless Sensor Node with an Energy Intensity Adaptive Management Algorithm

This paper presents a compact RF energy harvesting wireless sensor node with the antenna, rectifier, energy management circuits, and load integrated on a single printed circuit board and a total size of 53 mm × 59.77 mm × 4.5 mm. By etching rectangular slots in the radiation patch, the antenna area...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-10, Vol.23 (20), p.8641
Main Authors: Liu, Xiaoqiang, Li, Mingxue, Chen, Xinkai, Zhao, Yiheng, Xiao, Liyi, Zhang, Yufeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a compact RF energy harvesting wireless sensor node with the antenna, rectifier, energy management circuits, and load integrated on a single printed circuit board and a total size of 53 mm × 59.77 mm × 4.5 mm. By etching rectangular slots in the radiation patch, the antenna area is reduced by 13.9%. The antenna is tested to have an S11 of −24.9 dB at 2.437 GHz and a maximum gain of 4.8 dBi. The rectifier has a maximum RF-to-DC conversion efficiency of 52.53% at 7 dBm input energy. The proposed WSN can achieve self-powered operation at a distance of 13.4 m from the transmitter source. To enhance the conversion efficiency under different input energy densities, this paper establishes an energy model for two operating modes and proposes an energy-intensity adaptive management algorithm. The experiments demonstrated that the proposed WSN can effectively distinguish between the two operating modes based on input energy intensity and realize efficient energy management.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23208641