Loading…

SnO2 Films Deposited by Ultrasonic Spray Pyrolysis: Influence of Al Incorporation on the Properties

Aluminum-doped tin oxide (SnO 2 :Al) thin films were produced by an ultrasonic spray pyrolysis method. The effect of aluminum doping on structural, optical, and electrical properties of tin oxide thin films synthesized at 420 ° C was investigated. Al doping induced a change in the morphology of tin...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2019-07, Vol.24 (15), p.2797
Main Authors: Deyu, Getnet Kacha, Muñoz-Rojas, David, Rapenne, Laetitia, Deschanvres, Jean-Luc, Klein, Andreas, Jiménez, Carmen, Bellet, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aluminum-doped tin oxide (SnO 2 :Al) thin films were produced by an ultrasonic spray pyrolysis method. The effect of aluminum doping on structural, optical, and electrical properties of tin oxide thin films synthesized at 420 ° C was investigated. Al doping induced a change in the morphology of tin oxide films and yielded films with smaller grain size. SnO 2 thin films undergo a structural reordering and have a texture transition from (301) to (101), and then to (002) preferred cristallographic orientation upon Al doping. The lattice parameters (a and c) decreases with Al doping, following in a first approximation Vegard’s law. The optical transmission does not change in the visible region with an average transmittance value of 72–81%. Conversely, in the near infrared (NIR) region, the plasmon frequency shifts towards the IR region upon increasing Al concentration in the grown films. Nominally undoped SnO 2 have a conductivity of ∼1120 S/cm, which is at least two orders of magnitude larger than what is reported in literature. This higher conductivity is attributed to the Cl − ions in the SnCl 4 ·5(H 2 O) precursor, which would act as donor dopants. The introduction of Al into the SnO 2 lattice showed a decrease of the electrical conductivity of SnO 2 due to compensating hole generation. These findings will be useful for further studied tackling the tailoring of the properties of highly demanded fluorine doped tin oxide (FTO) films.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24152797