Loading…
Analysis of Autoencoders for Network Intrusion Detection
As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to acc...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (13), p.4294 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3 |
container_end_page | |
container_issue | 13 |
container_start_page | 4294 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Song, Youngrok Hyun, Sangwon Cheong, Yun-Gyung |
description | As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and also alleviate the burden of the laborious labeling task. Although the autoencoders are effective in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal model architecture and hyperparameter settings of the autoencoders that result in the best detection performance. This can be an obstacle that hinders practical applications of autoencoder-based NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets, NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an autoencoder model can have a significant impact on the IDS performance. |
doi_str_mv | 10.3390/s21134294 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_87edb525bb34466bb138c650a67ca3ae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_87edb525bb34466bb138c650a67ca3ae</doaj_id><sourcerecordid>2549681780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EouWx4A8isYFFwW87G6SKZyUEG1hbjj0pKWlc7ATE32MoQsDKI_vozPUMQgcEnzBW4tNECWGclnwDjQmnfKIpxZu_6hHaSWmBMWWM6W00yjAmqtRjpKedbd9Tk4pQF9OhD9C54CGmog6xuIP-LcTnYtb1cUhN6IoL6MH1udpDW7VtE-x_n7vo8ery4fxmcnt_PTuf3k4c57KfCEVzNF_rWpa4srKsa4qlJJh4DVzQknoirWJCCRCVoIILD74klFhBrXdsF83WXh_swqxis7Tx3QTbmK-LEOfGxr5xLRitwH8qqorl3rKqCNNOCmylcpZZyK6ztWs1VEvwDvK3bPtH-vela57MPLwaTRXFSmTB0bcghpcBUm-WTXLQtraDMCST42uOldQyo4f_0EUYYh72F1VKTZTGmTpeUy6GlCLUP2EINp-7NT-7ZR_QFJMq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549681780</pqid></control><display><type>article</type><title>Analysis of Autoencoders for Network Intrusion Detection</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Song, Youngrok ; Hyun, Sangwon ; Cheong, Yun-Gyung</creator><creatorcontrib>Song, Youngrok ; Hyun, Sangwon ; Cheong, Yun-Gyung</creatorcontrib><description>As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and also alleviate the burden of the laborious labeling task. Although the autoencoders are effective in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal model architecture and hyperparameter settings of the autoencoders that result in the best detection performance. This can be an obstacle that hinders practical applications of autoencoder-based NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets, NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an autoencoder model can have a significant impact on the IDS performance.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21134294</identifier><identifier>PMID: 34201798</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; autoencoders ; Cryptography ; Datasets ; deep-learning models ; IDS ; Intelligent networks ; Intrusion detection systems ; Learning ; Malware ; Methods ; ML-NIDS ; model design ; Neural networks ; NIDS ; Public Key Infrastructure</subject><ispartof>Sensors (Basel, Switzerland), 2021-06, Vol.21 (13), p.4294</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3</citedby><cites>FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3</cites><orcidid>0000-0001-6497-2659 ; 0000-0003-2265-4518 ; 0000-0001-6329-8439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2549681780/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2549681780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Song, Youngrok</creatorcontrib><creatorcontrib>Hyun, Sangwon</creatorcontrib><creatorcontrib>Cheong, Yun-Gyung</creatorcontrib><title>Analysis of Autoencoders for Network Intrusion Detection</title><title>Sensors (Basel, Switzerland)</title><description>As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and also alleviate the burden of the laborious labeling task. Although the autoencoders are effective in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal model architecture and hyperparameter settings of the autoencoders that result in the best detection performance. This can be an obstacle that hinders practical applications of autoencoder-based NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets, NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an autoencoder model can have a significant impact on the IDS performance.</description><subject>Algorithms</subject><subject>autoencoders</subject><subject>Cryptography</subject><subject>Datasets</subject><subject>deep-learning models</subject><subject>IDS</subject><subject>Intelligent networks</subject><subject>Intrusion detection systems</subject><subject>Learning</subject><subject>Malware</subject><subject>Methods</subject><subject>ML-NIDS</subject><subject>model design</subject><subject>Neural networks</subject><subject>NIDS</subject><subject>Public Key Infrastructure</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctOwzAQRS0EouWx4A8isYFFwW87G6SKZyUEG1hbjj0pKWlc7ATE32MoQsDKI_vozPUMQgcEnzBW4tNECWGclnwDjQmnfKIpxZu_6hHaSWmBMWWM6W00yjAmqtRjpKedbd9Tk4pQF9OhD9C54CGmog6xuIP-LcTnYtb1cUhN6IoL6MH1udpDW7VtE-x_n7vo8ery4fxmcnt_PTuf3k4c57KfCEVzNF_rWpa4srKsa4qlJJh4DVzQknoirWJCCRCVoIILD74klFhBrXdsF83WXh_swqxis7Tx3QTbmK-LEOfGxr5xLRitwH8qqorl3rKqCNNOCmylcpZZyK6ztWs1VEvwDvK3bPtH-vela57MPLwaTRXFSmTB0bcghpcBUm-WTXLQtraDMCST42uOldQyo4f_0EUYYh72F1VKTZTGmTpeUy6GlCLUP2EINp-7NT-7ZR_QFJMq</recordid><startdate>20210623</startdate><enddate>20210623</enddate><creator>Song, Youngrok</creator><creator>Hyun, Sangwon</creator><creator>Cheong, Yun-Gyung</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6497-2659</orcidid><orcidid>https://orcid.org/0000-0003-2265-4518</orcidid><orcidid>https://orcid.org/0000-0001-6329-8439</orcidid></search><sort><creationdate>20210623</creationdate><title>Analysis of Autoencoders for Network Intrusion Detection</title><author>Song, Youngrok ; Hyun, Sangwon ; Cheong, Yun-Gyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>autoencoders</topic><topic>Cryptography</topic><topic>Datasets</topic><topic>deep-learning models</topic><topic>IDS</topic><topic>Intelligent networks</topic><topic>Intrusion detection systems</topic><topic>Learning</topic><topic>Malware</topic><topic>Methods</topic><topic>ML-NIDS</topic><topic>model design</topic><topic>Neural networks</topic><topic>NIDS</topic><topic>Public Key Infrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Youngrok</creatorcontrib><creatorcontrib>Hyun, Sangwon</creatorcontrib><creatorcontrib>Cheong, Yun-Gyung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Youngrok</au><au>Hyun, Sangwon</au><au>Cheong, Yun-Gyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Autoencoders for Network Intrusion Detection</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-06-23</date><risdate>2021</risdate><volume>21</volume><issue>13</issue><spage>4294</spage><pages>4294-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and also alleviate the burden of the laborious labeling task. Although the autoencoders are effective in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal model architecture and hyperparameter settings of the autoencoders that result in the best detection performance. This can be an obstacle that hinders practical applications of autoencoder-based NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets, NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an autoencoder model can have a significant impact on the IDS performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34201798</pmid><doi>10.3390/s21134294</doi><orcidid>https://orcid.org/0000-0001-6497-2659</orcidid><orcidid>https://orcid.org/0000-0003-2265-4518</orcidid><orcidid>https://orcid.org/0000-0001-6329-8439</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-06, Vol.21 (13), p.4294 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_87edb525bb34466bb138c650a67ca3ae |
source | PubMed (Medline); Publicly Available Content (ProQuest) |
subjects | Algorithms autoencoders Cryptography Datasets deep-learning models IDS Intelligent networks Intrusion detection systems Learning Malware Methods ML-NIDS model design Neural networks NIDS Public Key Infrastructure |
title | Analysis of Autoencoders for Network Intrusion Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Autoencoders%20for%20Network%20Intrusion%20Detection&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Song,%20Youngrok&rft.date=2021-06-23&rft.volume=21&rft.issue=13&rft.spage=4294&rft.pages=4294-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21134294&rft_dat=%3Cproquest_doaj_%3E2549681780%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549681780&rft_id=info:pmid/34201798&rfr_iscdi=true |