Loading…

Analysis of Autoencoders for Network Intrusion Detection

As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to acc...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (13), p.4294
Main Authors: Song, Youngrok, Hyun, Sangwon, Cheong, Yun-Gyung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3
cites cdi_FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3
container_end_page
container_issue 13
container_start_page 4294
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Song, Youngrok
Hyun, Sangwon
Cheong, Yun-Gyung
description As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and also alleviate the burden of the laborious labeling task. Although the autoencoders are effective in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal model architecture and hyperparameter settings of the autoencoders that result in the best detection performance. This can be an obstacle that hinders practical applications of autoencoder-based NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets, NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an autoencoder model can have a significant impact on the IDS performance.
doi_str_mv 10.3390/s21134294
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_87edb525bb34466bb138c650a67ca3ae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_87edb525bb34466bb138c650a67ca3ae</doaj_id><sourcerecordid>2549681780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EouWx4A8isYFFwW87G6SKZyUEG1hbjj0pKWlc7ATE32MoQsDKI_vozPUMQgcEnzBW4tNECWGclnwDjQmnfKIpxZu_6hHaSWmBMWWM6W00yjAmqtRjpKedbd9Tk4pQF9OhD9C54CGmog6xuIP-LcTnYtb1cUhN6IoL6MH1udpDW7VtE-x_n7vo8ery4fxmcnt_PTuf3k4c57KfCEVzNF_rWpa4srKsa4qlJJh4DVzQknoirWJCCRCVoIILD74klFhBrXdsF83WXh_swqxis7Tx3QTbmK-LEOfGxr5xLRitwH8qqorl3rKqCNNOCmylcpZZyK6ztWs1VEvwDvK3bPtH-vela57MPLwaTRXFSmTB0bcghpcBUm-WTXLQtraDMCST42uOldQyo4f_0EUYYh72F1VKTZTGmTpeUy6GlCLUP2EINp-7NT-7ZR_QFJMq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549681780</pqid></control><display><type>article</type><title>Analysis of Autoencoders for Network Intrusion Detection</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Song, Youngrok ; Hyun, Sangwon ; Cheong, Yun-Gyung</creator><creatorcontrib>Song, Youngrok ; Hyun, Sangwon ; Cheong, Yun-Gyung</creatorcontrib><description>As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and also alleviate the burden of the laborious labeling task. Although the autoencoders are effective in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal model architecture and hyperparameter settings of the autoencoders that result in the best detection performance. This can be an obstacle that hinders practical applications of autoencoder-based NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets, NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an autoencoder model can have a significant impact on the IDS performance.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21134294</identifier><identifier>PMID: 34201798</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; autoencoders ; Cryptography ; Datasets ; deep-learning models ; IDS ; Intelligent networks ; Intrusion detection systems ; Learning ; Malware ; Methods ; ML-NIDS ; model design ; Neural networks ; NIDS ; Public Key Infrastructure</subject><ispartof>Sensors (Basel, Switzerland), 2021-06, Vol.21 (13), p.4294</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3</citedby><cites>FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3</cites><orcidid>0000-0001-6497-2659 ; 0000-0003-2265-4518 ; 0000-0001-6329-8439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2549681780/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2549681780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Song, Youngrok</creatorcontrib><creatorcontrib>Hyun, Sangwon</creatorcontrib><creatorcontrib>Cheong, Yun-Gyung</creatorcontrib><title>Analysis of Autoencoders for Network Intrusion Detection</title><title>Sensors (Basel, Switzerland)</title><description>As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and also alleviate the burden of the laborious labeling task. Although the autoencoders are effective in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal model architecture and hyperparameter settings of the autoencoders that result in the best detection performance. This can be an obstacle that hinders practical applications of autoencoder-based NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets, NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an autoencoder model can have a significant impact on the IDS performance.</description><subject>Algorithms</subject><subject>autoencoders</subject><subject>Cryptography</subject><subject>Datasets</subject><subject>deep-learning models</subject><subject>IDS</subject><subject>Intelligent networks</subject><subject>Intrusion detection systems</subject><subject>Learning</subject><subject>Malware</subject><subject>Methods</subject><subject>ML-NIDS</subject><subject>model design</subject><subject>Neural networks</subject><subject>NIDS</subject><subject>Public Key Infrastructure</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctOwzAQRS0EouWx4A8isYFFwW87G6SKZyUEG1hbjj0pKWlc7ATE32MoQsDKI_vozPUMQgcEnzBW4tNECWGclnwDjQmnfKIpxZu_6hHaSWmBMWWM6W00yjAmqtRjpKedbd9Tk4pQF9OhD9C54CGmog6xuIP-LcTnYtb1cUhN6IoL6MH1udpDW7VtE-x_n7vo8ery4fxmcnt_PTuf3k4c57KfCEVzNF_rWpa4srKsa4qlJJh4DVzQknoirWJCCRCVoIILD74klFhBrXdsF83WXh_swqxis7Tx3QTbmK-LEOfGxr5xLRitwH8qqorl3rKqCNNOCmylcpZZyK6ztWs1VEvwDvK3bPtH-vela57MPLwaTRXFSmTB0bcghpcBUm-WTXLQtraDMCST42uOldQyo4f_0EUYYh72F1VKTZTGmTpeUy6GlCLUP2EINp-7NT-7ZR_QFJMq</recordid><startdate>20210623</startdate><enddate>20210623</enddate><creator>Song, Youngrok</creator><creator>Hyun, Sangwon</creator><creator>Cheong, Yun-Gyung</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6497-2659</orcidid><orcidid>https://orcid.org/0000-0003-2265-4518</orcidid><orcidid>https://orcid.org/0000-0001-6329-8439</orcidid></search><sort><creationdate>20210623</creationdate><title>Analysis of Autoencoders for Network Intrusion Detection</title><author>Song, Youngrok ; Hyun, Sangwon ; Cheong, Yun-Gyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>autoencoders</topic><topic>Cryptography</topic><topic>Datasets</topic><topic>deep-learning models</topic><topic>IDS</topic><topic>Intelligent networks</topic><topic>Intrusion detection systems</topic><topic>Learning</topic><topic>Malware</topic><topic>Methods</topic><topic>ML-NIDS</topic><topic>model design</topic><topic>Neural networks</topic><topic>NIDS</topic><topic>Public Key Infrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Youngrok</creatorcontrib><creatorcontrib>Hyun, Sangwon</creatorcontrib><creatorcontrib>Cheong, Yun-Gyung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Youngrok</au><au>Hyun, Sangwon</au><au>Cheong, Yun-Gyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Autoencoders for Network Intrusion Detection</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-06-23</date><risdate>2021</risdate><volume>21</volume><issue>13</issue><spage>4294</spage><pages>4294-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and also alleviate the burden of the laborious labeling task. Although the autoencoders are effective in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal model architecture and hyperparameter settings of the autoencoders that result in the best detection performance. This can be an obstacle that hinders practical applications of autoencoder-based NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets, NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an autoencoder model can have a significant impact on the IDS performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34201798</pmid><doi>10.3390/s21134294</doi><orcidid>https://orcid.org/0000-0001-6497-2659</orcidid><orcidid>https://orcid.org/0000-0003-2265-4518</orcidid><orcidid>https://orcid.org/0000-0001-6329-8439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-06, Vol.21 (13), p.4294
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_87edb525bb34466bb138c650a67ca3ae
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Algorithms
autoencoders
Cryptography
Datasets
deep-learning models
IDS
Intelligent networks
Intrusion detection systems
Learning
Malware
Methods
ML-NIDS
model design
Neural networks
NIDS
Public Key Infrastructure
title Analysis of Autoencoders for Network Intrusion Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Autoencoders%20for%20Network%20Intrusion%20Detection&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Song,%20Youngrok&rft.date=2021-06-23&rft.volume=21&rft.issue=13&rft.spage=4294&rft.pages=4294-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21134294&rft_dat=%3Cproquest_doaj_%3E2549681780%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-572134df8f690ba69ff2066101d8e45292d16a73575e5b52545ded9121a52adc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549681780&rft_id=info:pmid/34201798&rfr_iscdi=true