Loading…

An RFID Indoor Positioning Algorithm Based on Support Vector Regression

Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2018-05, Vol.18 (5), p.1504
Main Authors: Xu, He, Wu, Manxing, Li, Peng, Zhu, Feng, Wang, Ruchuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3
cites cdi_FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3
container_end_page
container_issue 5
container_start_page 1504
container_title Sensors (Basel, Switzerland)
container_volume 18
creator Xu, He
Wu, Manxing
Li, Peng
Zhu, Feng
Wang, Ruchuan
description Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective.
doi_str_mv 10.3390/s18051504
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_87ee51d6dbd54f5dbcb6d078241f3a4e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_87ee51d6dbd54f5dbcb6d078241f3a4e</doaj_id><sourcerecordid>2038266150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhi1EBXTpoX8AReJSDtv6M3EuSFsodCWkIvpxtfwxCV5l7cVOKvXf17B0BT155Hn0zGhehN4T_JGxFn_KRGJBBOZ76IhwyueSUrz_oj5Eb3NeYUwZY_IAHdK24VJgdoSuF6G6u1peVsvgYkzVbcx-9DH40FeLoY_Jj_fr6rPO4KoYqu_TZhPTWP0COxb6DvoEORf-GL3p9JDh3fM7Qz-vvvy4-Dq_-Xa9vFjczC2v23FuakmF4Y5KS1pmDNNcS4xrbSnUnQFjhcbOYk46bJzjnWGEC-NYSwEkBzZDy63XRb1Sm-TXOv1RUXv19BFTr3QavR1AyQZAEFc74wTvhDPW1A43khZ5mfvoOt-6NpNZg7MQxqSHV9LXneDvVR9_K9FKWtekCD48C1J8mCCPau2zhWHQAeKUFcXsCSyXnqHT_9BVnFIop1KUYNlQ0vKmUGdbyqaYc4JutwzB6jFqtYu6sCcvt9-R_7JlfwE4gqOy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108721947</pqid></control><display><type>article</type><title>An RFID Indoor Positioning Algorithm Based on Support Vector Regression</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Xu, He ; Wu, Manxing ; Li, Peng ; Zhu, Feng ; Wang, Ruchuan</creator><creatorcontrib>Xu, He ; Wu, Manxing ; Li, Peng ; Zhu, Feng ; Wang, Ruchuan</creatorcontrib><description>Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s18051504</identifier><identifier>PMID: 29748503</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Bluetooth ; Global positioning systems ; GPS ; Indoor environments ; indoor positioning ; LANDMARC ; Location based services ; Radio frequency identification ; Readers ; Researchers ; RFID ; Shielding ; Support vector machines ; Tags</subject><ispartof>Sensors (Basel, Switzerland), 2018-05, Vol.18 (5), p.1504</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3</citedby><cites>FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3</cites><orcidid>0000-0003-2809-2237 ; 0000-0001-5026-5347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2108721947/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2108721947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29748503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, He</creatorcontrib><creatorcontrib>Wu, Manxing</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><title>An RFID Indoor Positioning Algorithm Based on Support Vector Regression</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective.</description><subject>Algorithms</subject><subject>Bluetooth</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Indoor environments</subject><subject>indoor positioning</subject><subject>LANDMARC</subject><subject>Location based services</subject><subject>Radio frequency identification</subject><subject>Readers</subject><subject>Researchers</subject><subject>RFID</subject><subject>Shielding</subject><subject>Support vector machines</subject><subject>Tags</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1P3DAQhi1EBXTpoX8AReJSDtv6M3EuSFsodCWkIvpxtfwxCV5l7cVOKvXf17B0BT155Hn0zGhehN4T_JGxFn_KRGJBBOZ76IhwyueSUrz_oj5Eb3NeYUwZY_IAHdK24VJgdoSuF6G6u1peVsvgYkzVbcx-9DH40FeLoY_Jj_fr6rPO4KoYqu_TZhPTWP0COxb6DvoEORf-GL3p9JDh3fM7Qz-vvvy4-Dq_-Xa9vFjczC2v23FuakmF4Y5KS1pmDNNcS4xrbSnUnQFjhcbOYk46bJzjnWGEC-NYSwEkBzZDy63XRb1Sm-TXOv1RUXv19BFTr3QavR1AyQZAEFc74wTvhDPW1A43khZ5mfvoOt-6NpNZg7MQxqSHV9LXneDvVR9_K9FKWtekCD48C1J8mCCPau2zhWHQAeKUFcXsCSyXnqHT_9BVnFIop1KUYNlQ0vKmUGdbyqaYc4JutwzB6jFqtYu6sCcvt9-R_7JlfwE4gqOy</recordid><startdate>20180510</startdate><enddate>20180510</enddate><creator>Xu, He</creator><creator>Wu, Manxing</creator><creator>Li, Peng</creator><creator>Zhu, Feng</creator><creator>Wang, Ruchuan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2809-2237</orcidid><orcidid>https://orcid.org/0000-0001-5026-5347</orcidid></search><sort><creationdate>20180510</creationdate><title>An RFID Indoor Positioning Algorithm Based on Support Vector Regression</title><author>Xu, He ; Wu, Manxing ; Li, Peng ; Zhu, Feng ; Wang, Ruchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Bluetooth</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Indoor environments</topic><topic>indoor positioning</topic><topic>LANDMARC</topic><topic>Location based services</topic><topic>Radio frequency identification</topic><topic>Readers</topic><topic>Researchers</topic><topic>RFID</topic><topic>Shielding</topic><topic>Support vector machines</topic><topic>Tags</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, He</creatorcontrib><creatorcontrib>Wu, Manxing</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, He</au><au>Wu, Manxing</au><au>Li, Peng</au><au>Zhu, Feng</au><au>Wang, Ruchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An RFID Indoor Positioning Algorithm Based on Support Vector Regression</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2018-05-10</date><risdate>2018</risdate><volume>18</volume><issue>5</issue><spage>1504</spage><pages>1504-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29748503</pmid><doi>10.3390/s18051504</doi><orcidid>https://orcid.org/0000-0003-2809-2237</orcidid><orcidid>https://orcid.org/0000-0001-5026-5347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2018-05, Vol.18 (5), p.1504
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_87ee51d6dbd54f5dbcb6d078241f3a4e
source Publicly Available Content (ProQuest); PubMed Central
subjects Algorithms
Bluetooth
Global positioning systems
GPS
Indoor environments
indoor positioning
LANDMARC
Location based services
Radio frequency identification
Readers
Researchers
RFID
Shielding
Support vector machines
Tags
title An RFID Indoor Positioning Algorithm Based on Support Vector Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20RFID%20Indoor%20Positioning%20Algorithm%20Based%20on%20Support%20Vector%20Regression&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xu,%20He&rft.date=2018-05-10&rft.volume=18&rft.issue=5&rft.spage=1504&rft.pages=1504-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s18051504&rft_dat=%3Cproquest_doaj_%3E2038266150%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108721947&rft_id=info:pmid/29748503&rfr_iscdi=true