Loading…
An RFID Indoor Positioning Algorithm Based on Support Vector Regression
Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2018-05, Vol.18 (5), p.1504 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3 |
container_end_page | |
container_issue | 5 |
container_start_page | 1504 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 18 |
creator | Xu, He Wu, Manxing Li, Peng Zhu, Feng Wang, Ruchuan |
description | Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective. |
doi_str_mv | 10.3390/s18051504 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_87ee51d6dbd54f5dbcb6d078241f3a4e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_87ee51d6dbd54f5dbcb6d078241f3a4e</doaj_id><sourcerecordid>2038266150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhi1EBXTpoX8AReJSDtv6M3EuSFsodCWkIvpxtfwxCV5l7cVOKvXf17B0BT155Hn0zGhehN4T_JGxFn_KRGJBBOZ76IhwyueSUrz_oj5Eb3NeYUwZY_IAHdK24VJgdoSuF6G6u1peVsvgYkzVbcx-9DH40FeLoY_Jj_fr6rPO4KoYqu_TZhPTWP0COxb6DvoEORf-GL3p9JDh3fM7Qz-vvvy4-Dq_-Xa9vFjczC2v23FuakmF4Y5KS1pmDNNcS4xrbSnUnQFjhcbOYk46bJzjnWGEC-NYSwEkBzZDy63XRb1Sm-TXOv1RUXv19BFTr3QavR1AyQZAEFc74wTvhDPW1A43khZ5mfvoOt-6NpNZg7MQxqSHV9LXneDvVR9_K9FKWtekCD48C1J8mCCPau2zhWHQAeKUFcXsCSyXnqHT_9BVnFIop1KUYNlQ0vKmUGdbyqaYc4JutwzB6jFqtYu6sCcvt9-R_7JlfwE4gqOy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108721947</pqid></control><display><type>article</type><title>An RFID Indoor Positioning Algorithm Based on Support Vector Regression</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Xu, He ; Wu, Manxing ; Li, Peng ; Zhu, Feng ; Wang, Ruchuan</creator><creatorcontrib>Xu, He ; Wu, Manxing ; Li, Peng ; Zhu, Feng ; Wang, Ruchuan</creatorcontrib><description>Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s18051504</identifier><identifier>PMID: 29748503</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Bluetooth ; Global positioning systems ; GPS ; Indoor environments ; indoor positioning ; LANDMARC ; Location based services ; Radio frequency identification ; Readers ; Researchers ; RFID ; Shielding ; Support vector machines ; Tags</subject><ispartof>Sensors (Basel, Switzerland), 2018-05, Vol.18 (5), p.1504</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3</citedby><cites>FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3</cites><orcidid>0000-0003-2809-2237 ; 0000-0001-5026-5347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2108721947/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2108721947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29748503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, He</creatorcontrib><creatorcontrib>Wu, Manxing</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><title>An RFID Indoor Positioning Algorithm Based on Support Vector Regression</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective.</description><subject>Algorithms</subject><subject>Bluetooth</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Indoor environments</subject><subject>indoor positioning</subject><subject>LANDMARC</subject><subject>Location based services</subject><subject>Radio frequency identification</subject><subject>Readers</subject><subject>Researchers</subject><subject>RFID</subject><subject>Shielding</subject><subject>Support vector machines</subject><subject>Tags</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1P3DAQhi1EBXTpoX8AReJSDtv6M3EuSFsodCWkIvpxtfwxCV5l7cVOKvXf17B0BT155Hn0zGhehN4T_JGxFn_KRGJBBOZ76IhwyueSUrz_oj5Eb3NeYUwZY_IAHdK24VJgdoSuF6G6u1peVsvgYkzVbcx-9DH40FeLoY_Jj_fr6rPO4KoYqu_TZhPTWP0COxb6DvoEORf-GL3p9JDh3fM7Qz-vvvy4-Dq_-Xa9vFjczC2v23FuakmF4Y5KS1pmDNNcS4xrbSnUnQFjhcbOYk46bJzjnWGEC-NYSwEkBzZDy63XRb1Sm-TXOv1RUXv19BFTr3QavR1AyQZAEFc74wTvhDPW1A43khZ5mfvoOt-6NpNZg7MQxqSHV9LXneDvVR9_K9FKWtekCD48C1J8mCCPau2zhWHQAeKUFcXsCSyXnqHT_9BVnFIop1KUYNlQ0vKmUGdbyqaYc4JutwzB6jFqtYu6sCcvt9-R_7JlfwE4gqOy</recordid><startdate>20180510</startdate><enddate>20180510</enddate><creator>Xu, He</creator><creator>Wu, Manxing</creator><creator>Li, Peng</creator><creator>Zhu, Feng</creator><creator>Wang, Ruchuan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2809-2237</orcidid><orcidid>https://orcid.org/0000-0001-5026-5347</orcidid></search><sort><creationdate>20180510</creationdate><title>An RFID Indoor Positioning Algorithm Based on Support Vector Regression</title><author>Xu, He ; Wu, Manxing ; Li, Peng ; Zhu, Feng ; Wang, Ruchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Bluetooth</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Indoor environments</topic><topic>indoor positioning</topic><topic>LANDMARC</topic><topic>Location based services</topic><topic>Radio frequency identification</topic><topic>Readers</topic><topic>Researchers</topic><topic>RFID</topic><topic>Shielding</topic><topic>Support vector machines</topic><topic>Tags</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, He</creatorcontrib><creatorcontrib>Wu, Manxing</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, He</au><au>Wu, Manxing</au><au>Li, Peng</au><au>Zhu, Feng</au><au>Wang, Ruchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An RFID Indoor Positioning Algorithm Based on Support Vector Regression</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2018-05-10</date><risdate>2018</risdate><volume>18</volume><issue>5</issue><spage>1504</spage><pages>1504-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29748503</pmid><doi>10.3390/s18051504</doi><orcidid>https://orcid.org/0000-0003-2809-2237</orcidid><orcidid>https://orcid.org/0000-0001-5026-5347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2018-05, Vol.18 (5), p.1504 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_87ee51d6dbd54f5dbcb6d078241f3a4e |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Algorithms Bluetooth Global positioning systems GPS Indoor environments indoor positioning LANDMARC Location based services Radio frequency identification Readers Researchers RFID Shielding Support vector machines Tags |
title | An RFID Indoor Positioning Algorithm Based on Support Vector Regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20RFID%20Indoor%20Positioning%20Algorithm%20Based%20on%20Support%20Vector%20Regression&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xu,%20He&rft.date=2018-05-10&rft.volume=18&rft.issue=5&rft.spage=1504&rft.pages=1504-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s18051504&rft_dat=%3Cproquest_doaj_%3E2038266150%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-b6825b4d28c193bb3a4a8006ac2e6fbebc5a0dc041f0bdd4fb3145bd392ee84e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108721947&rft_id=info:pmid/29748503&rfr_iscdi=true |