Loading…
On the decoupling theorem for vacuum metastability
In this paper, we numerically study the impact heavy field degrees of freedom have on vacuum metastability in a toy model, with the aim of better understanding how the decoupling theorem extends to semiclassical processes. We observe that decoupling applies to partial amplitudes associated with fixe...
Saved in:
Published in: | Physics letters. B 2017-10, Vol.773, p.527-533 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we numerically study the impact heavy field degrees of freedom have on vacuum metastability in a toy model, with the aim of better understanding how the decoupling theorem extends to semiclassical processes. We observe that decoupling applies to partial amplitudes associated with fixed final state field configurations emerging from the tunneling processes, characterized by a scale such as the inverse radius of a spherically symmetric bubble, and not directly on the total lifetime (as determined by the “bounce”). More specifically, tunneling amplitudes for bubbles with inverse radii smaller than the scale of the heavier fields are largely insensitive to their presence, while those for bubbles with inverse radii larger than that scale may be significantly modified. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2017.08.075 |