Loading…
Multiclient Identification System Using Adaptive Probabilistic Model
This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost...
Saved in:
Published in: | EURASIP journal on advances in signal processing 2010-01, Vol.2010 (1), Article 983581 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | EURASIP journal on advances in signal processing |
container_volume | 2010 |
creator | Lin, Chin-Teng Siana, Linda Shou, Yu-Wen Yang, Chien-Ting |
description | This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing. |
doi_str_mv | 10.1155/2010/983581 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_887a64690c8b41739813906a7f0686ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_887a64690c8b41739813906a7f0686ab</doaj_id><sourcerecordid>855689950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWD9O_oG9edC1yeZjk2OpX4UWBe05TLLZkrLd1GQr9N-7dUU8eMmE4Zl3mAehK4LvCOF8XGCCx0pSLskRGhEhy1wQiY___E_RWUprjLkocDFC94td03nbeNd22azqX197C50Pbfa2T53bZMvk21U2qWDb-U-XvcZgwPjGp34uW4TKNRfopIYmucufeo6Wjw_v0-d8_vI0m07muWWYdznBSghLXV0LowAqwUESIw0vmSwNcwxTKwjDRSEVKCaYpaoiiltbWUGhpudoNuRWAdZ6G_0G4l4H8Pq7EeJKQzxc47SUJQgmFLbSMFJSJQlVWEBZYyEFmD7resjaxvCxc6nTG5-saxpoXdglLTkXUimOe_JmIG0MKUVX_24mWB-064N2PWjv6duBTj3VrlzU67CLba_lX_wLXGaA4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855689950</pqid></control><display><type>article</type><title>Multiclient Identification System Using Adaptive Probabilistic Model</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Lin, Chin-Teng ; Siana, Linda ; Shou, Yu-Wen ; Yang, Chien-Ting</creator><creatorcontrib>Lin, Chin-Teng ; Siana, Linda ; Shou, Yu-Wen ; Yang, Chien-Ting</creatorcontrib><description>This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/2010/983581</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptive systems ; Advanced Image Processing for Defense and Security Applications ; Construction ; Engineering ; Illumination ; Lighting ; Mathematical models ; On-line systems ; Online ; Probabilistic methods ; Probability theory ; Quantum Information Technology ; Research Article ; Signal,Image and Speech Processing ; Spintronics</subject><ispartof>EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 983581</ispartof><rights>Chin-Teng Lin et al. 2010. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3</citedby><cites>FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,36990</link.rule.ids></links><search><creatorcontrib>Lin, Chin-Teng</creatorcontrib><creatorcontrib>Siana, Linda</creatorcontrib><creatorcontrib>Shou, Yu-Wen</creatorcontrib><creatorcontrib>Yang, Chien-Ting</creatorcontrib><title>Multiclient Identification System Using Adaptive Probabilistic Model</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.</description><subject>Adaptive systems</subject><subject>Advanced Image Processing for Defense and Security Applications</subject><subject>Construction</subject><subject>Engineering</subject><subject>Illumination</subject><subject>Lighting</subject><subject>Mathematical models</subject><subject>On-line systems</subject><subject>Online</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Quantum Information Technology</subject><subject>Research Article</subject><subject>Signal,Image and Speech Processing</subject><subject>Spintronics</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkE1LAzEQhoMoWD9O_oG9edC1yeZjk2OpX4UWBe05TLLZkrLd1GQr9N-7dUU8eMmE4Zl3mAehK4LvCOF8XGCCx0pSLskRGhEhy1wQiY___E_RWUprjLkocDFC94td03nbeNd22azqX197C50Pbfa2T53bZMvk21U2qWDb-U-XvcZgwPjGp34uW4TKNRfopIYmucufeo6Wjw_v0-d8_vI0m07muWWYdznBSghLXV0LowAqwUESIw0vmSwNcwxTKwjDRSEVKCaYpaoiiltbWUGhpudoNuRWAdZ6G_0G4l4H8Pq7EeJKQzxc47SUJQgmFLbSMFJSJQlVWEBZYyEFmD7resjaxvCxc6nTG5-saxpoXdglLTkXUimOe_JmIG0MKUVX_24mWB-064N2PWjv6duBTj3VrlzU67CLba_lX_wLXGaA4g</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Lin, Chin-Teng</creator><creator>Siana, Linda</creator><creator>Shou, Yu-Wen</creator><creator>Yang, Chien-Ting</creator><general>Springer International Publishing</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20100101</creationdate><title>Multiclient Identification System Using Adaptive Probabilistic Model</title><author>Lin, Chin-Teng ; Siana, Linda ; Shou, Yu-Wen ; Yang, Chien-Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive systems</topic><topic>Advanced Image Processing for Defense and Security Applications</topic><topic>Construction</topic><topic>Engineering</topic><topic>Illumination</topic><topic>Lighting</topic><topic>Mathematical models</topic><topic>On-line systems</topic><topic>Online</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Quantum Information Technology</topic><topic>Research Article</topic><topic>Signal,Image and Speech Processing</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chin-Teng</creatorcontrib><creatorcontrib>Siana, Linda</creatorcontrib><creatorcontrib>Shou, Yu-Wen</creatorcontrib><creatorcontrib>Yang, Chien-Ting</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chin-Teng</au><au>Siana, Linda</au><au>Shou, Yu-Wen</au><au>Yang, Chien-Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclient Identification System Using Adaptive Probabilistic Model</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>1</issue><artnum>983581</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1155/2010/983581</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6180 |
ispartof | EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 983581 |
issn | 1687-6180 1687-6172 1687-6180 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_887a64690c8b41739813906a7f0686ab |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Adaptive systems Advanced Image Processing for Defense and Security Applications Construction Engineering Illumination Lighting Mathematical models On-line systems Online Probabilistic methods Probability theory Quantum Information Technology Research Article Signal,Image and Speech Processing Spintronics |
title | Multiclient Identification System Using Adaptive Probabilistic Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclient%20Identification%20System%20Using%20Adaptive%20Probabilistic%20Model&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Lin,%20Chin-Teng&rft.date=2010-01-01&rft.volume=2010&rft.issue=1&rft.artnum=983581&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/2010/983581&rft_dat=%3Cproquest_doaj_%3E855689950%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855689950&rft_id=info:pmid/&rfr_iscdi=true |