Loading…

Multiclient Identification System Using Adaptive Probabilistic Model

This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing 2010-01, Vol.2010 (1), Article 983581
Main Authors: Lin, Chin-Teng, Siana, Linda, Shou, Yu-Wen, Yang, Chien-Ting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3
cites cdi_FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3
container_end_page
container_issue 1
container_start_page
container_title EURASIP journal on advances in signal processing
container_volume 2010
creator Lin, Chin-Teng
Siana, Linda
Shou, Yu-Wen
Yang, Chien-Ting
description This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.
doi_str_mv 10.1155/2010/983581
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_887a64690c8b41739813906a7f0686ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_887a64690c8b41739813906a7f0686ab</doaj_id><sourcerecordid>855689950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWD9O_oG9edC1yeZjk2OpX4UWBe05TLLZkrLd1GQr9N-7dUU8eMmE4Zl3mAehK4LvCOF8XGCCx0pSLskRGhEhy1wQiY___E_RWUprjLkocDFC94td03nbeNd22azqX197C50Pbfa2T53bZMvk21U2qWDb-U-XvcZgwPjGp34uW4TKNRfopIYmucufeo6Wjw_v0-d8_vI0m07muWWYdznBSghLXV0LowAqwUESIw0vmSwNcwxTKwjDRSEVKCaYpaoiiltbWUGhpudoNuRWAdZ6G_0G4l4H8Pq7EeJKQzxc47SUJQgmFLbSMFJSJQlVWEBZYyEFmD7resjaxvCxc6nTG5-saxpoXdglLTkXUimOe_JmIG0MKUVX_24mWB-064N2PWjv6duBTj3VrlzU67CLba_lX_wLXGaA4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855689950</pqid></control><display><type>article</type><title>Multiclient Identification System Using Adaptive Probabilistic Model</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Lin, Chin-Teng ; Siana, Linda ; Shou, Yu-Wen ; Yang, Chien-Ting</creator><creatorcontrib>Lin, Chin-Teng ; Siana, Linda ; Shou, Yu-Wen ; Yang, Chien-Ting</creatorcontrib><description>This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/2010/983581</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptive systems ; Advanced Image Processing for Defense and Security Applications ; Construction ; Engineering ; Illumination ; Lighting ; Mathematical models ; On-line systems ; Online ; Probabilistic methods ; Probability theory ; Quantum Information Technology ; Research Article ; Signal,Image and Speech Processing ; Spintronics</subject><ispartof>EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 983581</ispartof><rights>Chin-Teng Lin et al. 2010. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3</citedby><cites>FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,36990</link.rule.ids></links><search><creatorcontrib>Lin, Chin-Teng</creatorcontrib><creatorcontrib>Siana, Linda</creatorcontrib><creatorcontrib>Shou, Yu-Wen</creatorcontrib><creatorcontrib>Yang, Chien-Ting</creatorcontrib><title>Multiclient Identification System Using Adaptive Probabilistic Model</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.</description><subject>Adaptive systems</subject><subject>Advanced Image Processing for Defense and Security Applications</subject><subject>Construction</subject><subject>Engineering</subject><subject>Illumination</subject><subject>Lighting</subject><subject>Mathematical models</subject><subject>On-line systems</subject><subject>Online</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Quantum Information Technology</subject><subject>Research Article</subject><subject>Signal,Image and Speech Processing</subject><subject>Spintronics</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkE1LAzEQhoMoWD9O_oG9edC1yeZjk2OpX4UWBe05TLLZkrLd1GQr9N-7dUU8eMmE4Zl3mAehK4LvCOF8XGCCx0pSLskRGhEhy1wQiY___E_RWUprjLkocDFC94td03nbeNd22azqX197C50Pbfa2T53bZMvk21U2qWDb-U-XvcZgwPjGp34uW4TKNRfopIYmucufeo6Wjw_v0-d8_vI0m07muWWYdznBSghLXV0LowAqwUESIw0vmSwNcwxTKwjDRSEVKCaYpaoiiltbWUGhpudoNuRWAdZ6G_0G4l4H8Pq7EeJKQzxc47SUJQgmFLbSMFJSJQlVWEBZYyEFmD7resjaxvCxc6nTG5-saxpoXdglLTkXUimOe_JmIG0MKUVX_24mWB-064N2PWjv6duBTj3VrlzU67CLba_lX_wLXGaA4g</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Lin, Chin-Teng</creator><creator>Siana, Linda</creator><creator>Shou, Yu-Wen</creator><creator>Yang, Chien-Ting</creator><general>Springer International Publishing</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20100101</creationdate><title>Multiclient Identification System Using Adaptive Probabilistic Model</title><author>Lin, Chin-Teng ; Siana, Linda ; Shou, Yu-Wen ; Yang, Chien-Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive systems</topic><topic>Advanced Image Processing for Defense and Security Applications</topic><topic>Construction</topic><topic>Engineering</topic><topic>Illumination</topic><topic>Lighting</topic><topic>Mathematical models</topic><topic>On-line systems</topic><topic>Online</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Quantum Information Technology</topic><topic>Research Article</topic><topic>Signal,Image and Speech Processing</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chin-Teng</creatorcontrib><creatorcontrib>Siana, Linda</creatorcontrib><creatorcontrib>Shou, Yu-Wen</creatorcontrib><creatorcontrib>Yang, Chien-Ting</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chin-Teng</au><au>Siana, Linda</au><au>Shou, Yu-Wen</au><au>Yang, Chien-Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclient Identification System Using Adaptive Probabilistic Model</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>1</issue><artnum>983581</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1155/2010/983581</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6180
ispartof EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 983581
issn 1687-6180
1687-6172
1687-6180
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_887a64690c8b41739813906a7f0686ab
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Adaptive systems
Advanced Image Processing for Defense and Security Applications
Construction
Engineering
Illumination
Lighting
Mathematical models
On-line systems
Online
Probabilistic methods
Probability theory
Quantum Information Technology
Research Article
Signal,Image and Speech Processing
Spintronics
title Multiclient Identification System Using Adaptive Probabilistic Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclient%20Identification%20System%20Using%20Adaptive%20Probabilistic%20Model&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Lin,%20Chin-Teng&rft.date=2010-01-01&rft.volume=2010&rft.issue=1&rft.artnum=983581&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/2010/983581&rft_dat=%3Cproquest_doaj_%3E855689950%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-10966c3eff6b9aad65a81b8b57487b4e403c61402289a9464c39d195ccdc63af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855689950&rft_id=info:pmid/&rfr_iscdi=true