Loading…

Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell

This paper proposes a new optimal methodology for model parameters estimation of the Proton Exchange Membrane Fuel Cell. The main purpose here is to design a newly developed metaheuristic technique to deliver a model with higher accuracy. In this study, we utilized two modifications for the Teamwork...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports 2022-11, Vol.8, p.10776-10785
Main Authors: Syah, Rahmad, Guerrero, John William Grimaldo, Poltarykhin, Andrey Leonidovich, Suksatan, Wanich, Aravindhan, Surendar, Bokov, Dmitry O., Abdelbasset, Walid Kamal, Al-Janabi, Samaher, Alkaim, Ayad F., Tumanov, Dmitriy Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-7e864c0ede1d1a25008b953ae2cace158b18541d1a4d5a2c46f9a4c953f34e2c3
cites cdi_FETCH-LOGICAL-c410t-7e864c0ede1d1a25008b953ae2cace158b18541d1a4d5a2c46f9a4c953f34e2c3
container_end_page 10785
container_issue
container_start_page 10776
container_title Energy reports
container_volume 8
creator Syah, Rahmad
Guerrero, John William Grimaldo
Poltarykhin, Andrey Leonidovich
Suksatan, Wanich
Aravindhan, Surendar
Bokov, Dmitry O.
Abdelbasset, Walid Kamal
Al-Janabi, Samaher
Alkaim, Ayad F.
Tumanov, Dmitriy Yu
description This paper proposes a new optimal methodology for model parameters estimation of the Proton Exchange Membrane Fuel Cell. The main purpose here is to design a newly developed metaheuristic technique to deliver a model with higher accuracy. In this study, we utilized two modifications for the Teamwork Optimizer to get higher accuracy. The two modifiers are opposition-based learning and chaotic mechanism. The results show that using the opposition-based learning, the population diversity has been kept, owing to the greater population size due to the solution space, and using the Chaos theory, the population diversity has been increased. This is proved by applying the Improved Teamwork Optimizer to minimize the Root Mean Square Error and Integral Absolute Error between the suggested model and empirical data. The validation has been done by applying the proposed Improved Teamwork Optimizer to two studied cases, which are Nexa Proton Exchange Membrane Fuel Cell and NedSstack PS6 Proton Exchange Membrane Fuel Cell, and comparing it with other published works. Simulation results showed that the proposed method with 1.14 Integral Absolute Error and 0.21 Root Mean Square Error for NedSstack PS6 Proton Exchange Membrane Fuel Cells and with 12 Integral Absolute Error and 0.17 Root Mean Square Error for Nexa Proton Exchange Membrane Fuel Cells provides the minimum error value among the other optimization techniques. This shows the higher potential of the proposed method for use as the parameter estimator for Proton Exchange Membrane Fuel Cells.
doi_str_mv 10.1016/j.egyr.2022.08.177
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_889b949831b446769dffdafb2955c672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352484722016225</els_id><doaj_id>oai_doaj_org_article_889b949831b446769dffdafb2955c672</doaj_id><sourcerecordid>S2352484722016225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-7e864c0ede1d1a25008b953ae2cace158b18541d1a4d5a2c46f9a4c953f34e2c3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIVKU_wMk_kGA7TuJIXFB5VarEBc6WY69bh6SOHFMoX49DEeLEaXdndka7kySXBGcEk_KqzWBz8BnFlGaYZ6SqTpIZzQuaMs6q0z_9ebIYxxZjTGqKWZnPEriFPXRuAI0CyP7d-VfkhmB7-wkeGedR7zR0aJBe9hAiBmNkZbBuh5xBYQto8C7ECT7UVu42gHroGy93gMxbVCrouovkzMhuhMVPnScv93fPy8d0_fSwWt6sU8UIDmkFvGQKgwaiiaQFxrypi1wCVVIBKXhDeMEmjulCUsVKU0um4orJWVzK58nq6KudbMXg46H-IJy04htwfiOkD1Z1IDivm5rVPCcNY2VV1toYLU1D66JQZUWjFz16Ke_G0YP59SNYTLmLVky5iyl3gbmIuUfR9VEE8cu9BS9GZWGnQFsPKsQz7H_yL4LYjZ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell</title><source>Elsevier ScienceDirect Journals</source><creator>Syah, Rahmad ; Guerrero, John William Grimaldo ; Poltarykhin, Andrey Leonidovich ; Suksatan, Wanich ; Aravindhan, Surendar ; Bokov, Dmitry O. ; Abdelbasset, Walid Kamal ; Al-Janabi, Samaher ; Alkaim, Ayad F. ; Tumanov, Dmitriy Yu</creator><creatorcontrib>Syah, Rahmad ; Guerrero, John William Grimaldo ; Poltarykhin, Andrey Leonidovich ; Suksatan, Wanich ; Aravindhan, Surendar ; Bokov, Dmitry O. ; Abdelbasset, Walid Kamal ; Al-Janabi, Samaher ; Alkaim, Ayad F. ; Tumanov, Dmitriy Yu</creatorcontrib><description>This paper proposes a new optimal methodology for model parameters estimation of the Proton Exchange Membrane Fuel Cell. The main purpose here is to design a newly developed metaheuristic technique to deliver a model with higher accuracy. In this study, we utilized two modifications for the Teamwork Optimizer to get higher accuracy. The two modifiers are opposition-based learning and chaotic mechanism. The results show that using the opposition-based learning, the population diversity has been kept, owing to the greater population size due to the solution space, and using the Chaos theory, the population diversity has been increased. This is proved by applying the Improved Teamwork Optimizer to minimize the Root Mean Square Error and Integral Absolute Error between the suggested model and empirical data. The validation has been done by applying the proposed Improved Teamwork Optimizer to two studied cases, which are Nexa Proton Exchange Membrane Fuel Cell and NedSstack PS6 Proton Exchange Membrane Fuel Cell, and comparing it with other published works. Simulation results showed that the proposed method with 1.14 Integral Absolute Error and 0.21 Root Mean Square Error for NedSstack PS6 Proton Exchange Membrane Fuel Cells and with 12 Integral Absolute Error and 0.17 Root Mean Square Error for Nexa Proton Exchange Membrane Fuel Cells provides the minimum error value among the other optimization techniques. This shows the higher potential of the proposed method for use as the parameter estimator for Proton Exchange Membrane Fuel Cells.</description><identifier>ISSN: 2352-4847</identifier><identifier>EISSN: 2352-4847</identifier><identifier>DOI: 10.1016/j.egyr.2022.08.177</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Improved Teamwork Optimizer ; PEMFC ; System estimation ; Voltage profile</subject><ispartof>Energy reports, 2022-11, Vol.8, p.10776-10785</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-7e864c0ede1d1a25008b953ae2cace158b18541d1a4d5a2c46f9a4c953f34e2c3</citedby><cites>FETCH-LOGICAL-c410t-7e864c0ede1d1a25008b953ae2cace158b18541d1a4d5a2c46f9a4c953f34e2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352484722016225$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Syah, Rahmad</creatorcontrib><creatorcontrib>Guerrero, John William Grimaldo</creatorcontrib><creatorcontrib>Poltarykhin, Andrey Leonidovich</creatorcontrib><creatorcontrib>Suksatan, Wanich</creatorcontrib><creatorcontrib>Aravindhan, Surendar</creatorcontrib><creatorcontrib>Bokov, Dmitry O.</creatorcontrib><creatorcontrib>Abdelbasset, Walid Kamal</creatorcontrib><creatorcontrib>Al-Janabi, Samaher</creatorcontrib><creatorcontrib>Alkaim, Ayad F.</creatorcontrib><creatorcontrib>Tumanov, Dmitriy Yu</creatorcontrib><title>Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell</title><title>Energy reports</title><description>This paper proposes a new optimal methodology for model parameters estimation of the Proton Exchange Membrane Fuel Cell. The main purpose here is to design a newly developed metaheuristic technique to deliver a model with higher accuracy. In this study, we utilized two modifications for the Teamwork Optimizer to get higher accuracy. The two modifiers are opposition-based learning and chaotic mechanism. The results show that using the opposition-based learning, the population diversity has been kept, owing to the greater population size due to the solution space, and using the Chaos theory, the population diversity has been increased. This is proved by applying the Improved Teamwork Optimizer to minimize the Root Mean Square Error and Integral Absolute Error between the suggested model and empirical data. The validation has been done by applying the proposed Improved Teamwork Optimizer to two studied cases, which are Nexa Proton Exchange Membrane Fuel Cell and NedSstack PS6 Proton Exchange Membrane Fuel Cell, and comparing it with other published works. Simulation results showed that the proposed method with 1.14 Integral Absolute Error and 0.21 Root Mean Square Error for NedSstack PS6 Proton Exchange Membrane Fuel Cells and with 12 Integral Absolute Error and 0.17 Root Mean Square Error for Nexa Proton Exchange Membrane Fuel Cells provides the minimum error value among the other optimization techniques. This shows the higher potential of the proposed method for use as the parameter estimator for Proton Exchange Membrane Fuel Cells.</description><subject>Improved Teamwork Optimizer</subject><subject>PEMFC</subject><subject>System estimation</subject><subject>Voltage profile</subject><issn>2352-4847</issn><issn>2352-4847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UMtOwzAQjBBIVKU_wMk_kGA7TuJIXFB5VarEBc6WY69bh6SOHFMoX49DEeLEaXdndka7kySXBGcEk_KqzWBz8BnFlGaYZ6SqTpIZzQuaMs6q0z_9ebIYxxZjTGqKWZnPEriFPXRuAI0CyP7d-VfkhmB7-wkeGedR7zR0aJBe9hAiBmNkZbBuh5xBYQto8C7ECT7UVu42gHroGy93gMxbVCrouovkzMhuhMVPnScv93fPy8d0_fSwWt6sU8UIDmkFvGQKgwaiiaQFxrypi1wCVVIBKXhDeMEmjulCUsVKU0um4orJWVzK58nq6KudbMXg46H-IJy04htwfiOkD1Z1IDivm5rVPCcNY2VV1toYLU1D66JQZUWjFz16Ke_G0YP59SNYTLmLVky5iyl3gbmIuUfR9VEE8cu9BS9GZWGnQFsPKsQz7H_yL4LYjZ0</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Syah, Rahmad</creator><creator>Guerrero, John William Grimaldo</creator><creator>Poltarykhin, Andrey Leonidovich</creator><creator>Suksatan, Wanich</creator><creator>Aravindhan, Surendar</creator><creator>Bokov, Dmitry O.</creator><creator>Abdelbasset, Walid Kamal</creator><creator>Al-Janabi, Samaher</creator><creator>Alkaim, Ayad F.</creator><creator>Tumanov, Dmitriy Yu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202211</creationdate><title>Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell</title><author>Syah, Rahmad ; Guerrero, John William Grimaldo ; Poltarykhin, Andrey Leonidovich ; Suksatan, Wanich ; Aravindhan, Surendar ; Bokov, Dmitry O. ; Abdelbasset, Walid Kamal ; Al-Janabi, Samaher ; Alkaim, Ayad F. ; Tumanov, Dmitriy Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-7e864c0ede1d1a25008b953ae2cace158b18541d1a4d5a2c46f9a4c953f34e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Improved Teamwork Optimizer</topic><topic>PEMFC</topic><topic>System estimation</topic><topic>Voltage profile</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syah, Rahmad</creatorcontrib><creatorcontrib>Guerrero, John William Grimaldo</creatorcontrib><creatorcontrib>Poltarykhin, Andrey Leonidovich</creatorcontrib><creatorcontrib>Suksatan, Wanich</creatorcontrib><creatorcontrib>Aravindhan, Surendar</creatorcontrib><creatorcontrib>Bokov, Dmitry O.</creatorcontrib><creatorcontrib>Abdelbasset, Walid Kamal</creatorcontrib><creatorcontrib>Al-Janabi, Samaher</creatorcontrib><creatorcontrib>Alkaim, Ayad F.</creatorcontrib><creatorcontrib>Tumanov, Dmitriy Yu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energy reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syah, Rahmad</au><au>Guerrero, John William Grimaldo</au><au>Poltarykhin, Andrey Leonidovich</au><au>Suksatan, Wanich</au><au>Aravindhan, Surendar</au><au>Bokov, Dmitry O.</au><au>Abdelbasset, Walid Kamal</au><au>Al-Janabi, Samaher</au><au>Alkaim, Ayad F.</au><au>Tumanov, Dmitriy Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell</atitle><jtitle>Energy reports</jtitle><date>2022-11</date><risdate>2022</risdate><volume>8</volume><spage>10776</spage><epage>10785</epage><pages>10776-10785</pages><issn>2352-4847</issn><eissn>2352-4847</eissn><abstract>This paper proposes a new optimal methodology for model parameters estimation of the Proton Exchange Membrane Fuel Cell. The main purpose here is to design a newly developed metaheuristic technique to deliver a model with higher accuracy. In this study, we utilized two modifications for the Teamwork Optimizer to get higher accuracy. The two modifiers are opposition-based learning and chaotic mechanism. The results show that using the opposition-based learning, the population diversity has been kept, owing to the greater population size due to the solution space, and using the Chaos theory, the population diversity has been increased. This is proved by applying the Improved Teamwork Optimizer to minimize the Root Mean Square Error and Integral Absolute Error between the suggested model and empirical data. The validation has been done by applying the proposed Improved Teamwork Optimizer to two studied cases, which are Nexa Proton Exchange Membrane Fuel Cell and NedSstack PS6 Proton Exchange Membrane Fuel Cell, and comparing it with other published works. Simulation results showed that the proposed method with 1.14 Integral Absolute Error and 0.21 Root Mean Square Error for NedSstack PS6 Proton Exchange Membrane Fuel Cells and with 12 Integral Absolute Error and 0.17 Root Mean Square Error for Nexa Proton Exchange Membrane Fuel Cells provides the minimum error value among the other optimization techniques. This shows the higher potential of the proposed method for use as the parameter estimator for Proton Exchange Membrane Fuel Cells.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.egyr.2022.08.177</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-4847
ispartof Energy reports, 2022-11, Vol.8, p.10776-10785
issn 2352-4847
2352-4847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_889b949831b446769dffdafb2955c672
source Elsevier ScienceDirect Journals
subjects Improved Teamwork Optimizer
PEMFC
System estimation
Voltage profile
title Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developed%20teamwork%20optimizer%20for%20model%20parameter%20estimation%20of%20the%20proton%20exchange%20membrane%20fuel%20cell&rft.jtitle=Energy%20reports&rft.au=Syah,%20Rahmad&rft.date=2022-11&rft.volume=8&rft.spage=10776&rft.epage=10785&rft.pages=10776-10785&rft.issn=2352-4847&rft.eissn=2352-4847&rft_id=info:doi/10.1016/j.egyr.2022.08.177&rft_dat=%3Celsevier_doaj_%3ES2352484722016225%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-7e864c0ede1d1a25008b953ae2cace158b18541d1a4d5a2c46f9a4c953f34e2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true