Loading…
Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System
By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds an...
Saved in:
Published in: | Atmospheric chemistry and physics 2023-04, Vol.23 (8), p.4819-4847 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3 |
container_end_page | 4847 |
container_issue | 8 |
container_start_page | 4819 |
container_title | Atmospheric chemistry and physics |
container_volume | 23 |
creator | McCusker, Gillian Young Vüllers, Jutta Achtert, Peggy Field, Paul Day, Jonathan J Forbes, Richard Price, Ruth O'Connor, Ewan Tjernström, Michael Prytherch, John Neely III, Ryan Brooks, Ian M |
description | By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM - two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) - while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS). |
doi_str_mv | 10.5194/acp-23-4819-2023 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_88accd69fe074e9495809a763e0ce791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746835365</galeid><doaj_id>oai_doaj_org_article_88accd69fe074e9495809a763e0ce791</doaj_id><sourcerecordid>A746835365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3</originalsourceid><addsrcrecordid>eNptks9rFDEcxQdRsFbvHgc8CU6b35kcl9rahYpgrQcvIZN8Z5pldrImGWv_ezO7oi5IDgkvn-8jL7yqeo3RGceKnRu7awhtWItVQxChT6oTLFrUSErY03_Oz6sXKW0QIhxhdlJ9u_xhxtlkPw31KtrsbW3HMLtUb4ODcQRXP_h8X-d7qO8m3_sifFxuajO5ej1lGKLJRbwKEaxJe6Pbx5Rh-7J61psxwavf-2l1d3X55eK6ufn0YX2xumksxzI3rHcgEAisuDKCt1IgR6hEoldMFktLVNfh3lIuDWHWdRJjiwUG5SzCqKOn1frg64LZ6F30WxMfdTBe74UQB21iCTaCbltjrROqByQZKKZ4i5SRggKyIBUuXu8OXukBdnN35Pbef13t3dKsSfliLAv-5oDvYvg-Q8p6E-Y4lbSatIi1nGLC_1KDKW_wUx9yNHbrk9UryURLORULdfYfqiwHW2_DBL0v-tHA26OBwmT4mQczp6TXt5-PWXRgbQwpRej_JMNIL_3RpT-aUL30Ry_9ob8AZMS15Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804853125</pqid></control><display><type>article</type><title>Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System</title><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><source>Alma/SFX Local Collection</source><creator>McCusker, Gillian Young ; Vüllers, Jutta ; Achtert, Peggy ; Field, Paul ; Day, Jonathan J ; Forbes, Richard ; Price, Ruth ; O'Connor, Ewan ; Tjernström, Michael ; Prytherch, John ; Neely III, Ryan ; Brooks, Ian M</creator><creatorcontrib>McCusker, Gillian Young ; Vüllers, Jutta ; Achtert, Peggy ; Field, Paul ; Day, Jonathan J ; Forbes, Richard ; Price, Ruth ; O'Connor, Ewan ; Tjernström, Michael ; Prytherch, John ; Neely III, Ryan ; Brooks, Ian M</creatorcontrib><description>By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM - two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) - while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS).</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-23-4819-2023</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosols ; Algorithms ; Arctic clouds ; Arctic observations ; Bias ; Boundary conditions ; Cloud condensation nuclei ; Cloud condensation nuclei concentrations ; Cloud cover ; Cloud microphysics ; Cloud physics ; Cloudiness ; Clouds ; Condensates ; Condensation nuclei ; Configurations ; Driving conditions ; Dynamics ; Energy balance ; Expeditions ; Force and energy ; Freezing ; General circulation models ; Humidity ; Ice melting ; Liquid water content ; Low altitude ; Lower troposphere ; Mathematical models ; Meteorological conditions ; Modelling ; Moisture content ; Moisture effects ; Performance evaluation ; Physics ; Polar environments ; Precipitation ; Radiation ; Radiative cooling ; Radiometers ; Remote sensing ; Sea ice ; Simulation ; Simulation methods ; Surface energy ; Surface energy balance ; Surface properties ; Surface temperature ; Telecommunications systems ; Thermodynamics ; Troposphere ; Vertical profiles ; Water ; Water content ; Weather forecasting</subject><ispartof>Atmospheric chemistry and physics, 2023-04, Vol.23 (8), p.4819-4847</ispartof><rights>COPYRIGHT 2023 Copernicus GmbH</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3</citedby><cites>FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3</cites><orcidid>0000-0003-1981-9860 ; 0000-0002-5051-1322 ; 0000-0001-9834-5100 ; 0000-0002-8464-7332 ; 0000-0002-6908-7410 ; 0000-0003-4560-4812 ; 0000-0003-1209-289X ; 0000-0003-0156-5276 ; 0000-0002-6483-1159 ; 0000-0002-3596-8287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2804853125/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2804853125?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,861,882,2096,25734,27905,27906,36993,44571,74875</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-220217$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>McCusker, Gillian Young</creatorcontrib><creatorcontrib>Vüllers, Jutta</creatorcontrib><creatorcontrib>Achtert, Peggy</creatorcontrib><creatorcontrib>Field, Paul</creatorcontrib><creatorcontrib>Day, Jonathan J</creatorcontrib><creatorcontrib>Forbes, Richard</creatorcontrib><creatorcontrib>Price, Ruth</creatorcontrib><creatorcontrib>O'Connor, Ewan</creatorcontrib><creatorcontrib>Tjernström, Michael</creatorcontrib><creatorcontrib>Prytherch, John</creatorcontrib><creatorcontrib>Neely III, Ryan</creatorcontrib><creatorcontrib>Brooks, Ian M</creatorcontrib><title>Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System</title><title>Atmospheric chemistry and physics</title><description>By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM - two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) - while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS).</description><subject>Aerosols</subject><subject>Algorithms</subject><subject>Arctic clouds</subject><subject>Arctic observations</subject><subject>Bias</subject><subject>Boundary conditions</subject><subject>Cloud condensation nuclei</subject><subject>Cloud condensation nuclei concentrations</subject><subject>Cloud cover</subject><subject>Cloud microphysics</subject><subject>Cloud physics</subject><subject>Cloudiness</subject><subject>Clouds</subject><subject>Condensates</subject><subject>Condensation nuclei</subject><subject>Configurations</subject><subject>Driving conditions</subject><subject>Dynamics</subject><subject>Energy balance</subject><subject>Expeditions</subject><subject>Force and energy</subject><subject>Freezing</subject><subject>General circulation models</subject><subject>Humidity</subject><subject>Ice melting</subject><subject>Liquid water content</subject><subject>Low altitude</subject><subject>Lower troposphere</subject><subject>Mathematical models</subject><subject>Meteorological conditions</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Moisture effects</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Polar environments</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Radiative cooling</subject><subject>Radiometers</subject><subject>Remote sensing</subject><subject>Sea ice</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Surface energy</subject><subject>Surface energy balance</subject><subject>Surface properties</subject><subject>Surface temperature</subject><subject>Telecommunications systems</subject><subject>Thermodynamics</subject><subject>Troposphere</subject><subject>Vertical profiles</subject><subject>Water</subject><subject>Water content</subject><subject>Weather forecasting</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rFDEcxQdRsFbvHgc8CU6b35kcl9rahYpgrQcvIZN8Z5pldrImGWv_ezO7oi5IDgkvn-8jL7yqeo3RGceKnRu7awhtWItVQxChT6oTLFrUSErY03_Oz6sXKW0QIhxhdlJ9u_xhxtlkPw31KtrsbW3HMLtUb4ODcQRXP_h8X-d7qO8m3_sifFxuajO5ej1lGKLJRbwKEaxJe6Pbx5Rh-7J61psxwavf-2l1d3X55eK6ufn0YX2xumksxzI3rHcgEAisuDKCt1IgR6hEoldMFktLVNfh3lIuDWHWdRJjiwUG5SzCqKOn1frg64LZ6F30WxMfdTBe74UQB21iCTaCbltjrROqByQZKKZ4i5SRggKyIBUuXu8OXukBdnN35Pbef13t3dKsSfliLAv-5oDvYvg-Q8p6E-Y4lbSatIi1nGLC_1KDKW_wUx9yNHbrk9UryURLORULdfYfqiwHW2_DBL0v-tHA26OBwmT4mQczp6TXt5-PWXRgbQwpRej_JMNIL_3RpT-aUL30Ry_9ob8AZMS15Q</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>McCusker, Gillian Young</creator><creator>Vüllers, Jutta</creator><creator>Achtert, Peggy</creator><creator>Field, Paul</creator><creator>Day, Jonathan J</creator><creator>Forbes, Richard</creator><creator>Price, Ruth</creator><creator>O'Connor, Ewan</creator><creator>Tjernström, Michael</creator><creator>Prytherch, John</creator><creator>Neely III, Ryan</creator><creator>Brooks, Ian M</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1981-9860</orcidid><orcidid>https://orcid.org/0000-0002-5051-1322</orcidid><orcidid>https://orcid.org/0000-0001-9834-5100</orcidid><orcidid>https://orcid.org/0000-0002-8464-7332</orcidid><orcidid>https://orcid.org/0000-0002-6908-7410</orcidid><orcidid>https://orcid.org/0000-0003-4560-4812</orcidid><orcidid>https://orcid.org/0000-0003-1209-289X</orcidid><orcidid>https://orcid.org/0000-0003-0156-5276</orcidid><orcidid>https://orcid.org/0000-0002-6483-1159</orcidid><orcidid>https://orcid.org/0000-0002-3596-8287</orcidid></search><sort><creationdate>20230424</creationdate><title>Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System</title><author>McCusker, Gillian Young ; Vüllers, Jutta ; Achtert, Peggy ; Field, Paul ; Day, Jonathan J ; Forbes, Richard ; Price, Ruth ; O'Connor, Ewan ; Tjernström, Michael ; Prytherch, John ; Neely III, Ryan ; Brooks, Ian M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Algorithms</topic><topic>Arctic clouds</topic><topic>Arctic observations</topic><topic>Bias</topic><topic>Boundary conditions</topic><topic>Cloud condensation nuclei</topic><topic>Cloud condensation nuclei concentrations</topic><topic>Cloud cover</topic><topic>Cloud microphysics</topic><topic>Cloud physics</topic><topic>Cloudiness</topic><topic>Clouds</topic><topic>Condensates</topic><topic>Condensation nuclei</topic><topic>Configurations</topic><topic>Driving conditions</topic><topic>Dynamics</topic><topic>Energy balance</topic><topic>Expeditions</topic><topic>Force and energy</topic><topic>Freezing</topic><topic>General circulation models</topic><topic>Humidity</topic><topic>Ice melting</topic><topic>Liquid water content</topic><topic>Low altitude</topic><topic>Lower troposphere</topic><topic>Mathematical models</topic><topic>Meteorological conditions</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Moisture effects</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Polar environments</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Radiative cooling</topic><topic>Radiometers</topic><topic>Remote sensing</topic><topic>Sea ice</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Surface energy</topic><topic>Surface energy balance</topic><topic>Surface properties</topic><topic>Surface temperature</topic><topic>Telecommunications systems</topic><topic>Thermodynamics</topic><topic>Troposphere</topic><topic>Vertical profiles</topic><topic>Water</topic><topic>Water content</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCusker, Gillian Young</creatorcontrib><creatorcontrib>Vüllers, Jutta</creatorcontrib><creatorcontrib>Achtert, Peggy</creatorcontrib><creatorcontrib>Field, Paul</creatorcontrib><creatorcontrib>Day, Jonathan J</creatorcontrib><creatorcontrib>Forbes, Richard</creatorcontrib><creatorcontrib>Price, Ruth</creatorcontrib><creatorcontrib>O'Connor, Ewan</creatorcontrib><creatorcontrib>Tjernström, Michael</creatorcontrib><creatorcontrib>Prytherch, John</creatorcontrib><creatorcontrib>Neely III, Ryan</creatorcontrib><creatorcontrib>Brooks, Ian M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCusker, Gillian Young</au><au>Vüllers, Jutta</au><au>Achtert, Peggy</au><au>Field, Paul</au><au>Day, Jonathan J</au><au>Forbes, Richard</au><au>Price, Ruth</au><au>O'Connor, Ewan</au><au>Tjernström, Michael</au><au>Prytherch, John</au><au>Neely III, Ryan</au><au>Brooks, Ian M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2023-04-24</date><risdate>2023</risdate><volume>23</volume><issue>8</issue><spage>4819</spage><epage>4847</epage><pages>4819-4847</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM - two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) - while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS).</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-23-4819-2023</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-1981-9860</orcidid><orcidid>https://orcid.org/0000-0002-5051-1322</orcidid><orcidid>https://orcid.org/0000-0001-9834-5100</orcidid><orcidid>https://orcid.org/0000-0002-8464-7332</orcidid><orcidid>https://orcid.org/0000-0002-6908-7410</orcidid><orcidid>https://orcid.org/0000-0003-4560-4812</orcidid><orcidid>https://orcid.org/0000-0003-1209-289X</orcidid><orcidid>https://orcid.org/0000-0003-0156-5276</orcidid><orcidid>https://orcid.org/0000-0002-6483-1159</orcidid><orcidid>https://orcid.org/0000-0002-3596-8287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2023-04, Vol.23 (8), p.4819-4847 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_88accd69fe074e9495809a763e0ce791 |
source | DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest); Alma/SFX Local Collection |
subjects | Aerosols Algorithms Arctic clouds Arctic observations Bias Boundary conditions Cloud condensation nuclei Cloud condensation nuclei concentrations Cloud cover Cloud microphysics Cloud physics Cloudiness Clouds Condensates Condensation nuclei Configurations Driving conditions Dynamics Energy balance Expeditions Force and energy Freezing General circulation models Humidity Ice melting Liquid water content Low altitude Lower troposphere Mathematical models Meteorological conditions Modelling Moisture content Moisture effects Performance evaluation Physics Polar environments Precipitation Radiation Radiative cooling Radiometers Remote sensing Sea ice Simulation Simulation methods Surface energy Surface energy balance Surface properties Surface temperature Telecommunications systems Thermodynamics Troposphere Vertical profiles Water Water content Weather forecasting |
title | Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Arctic%20clouds%20modelled%20with%20the%20Unified%20Model%20and%20Integrated%20Forecasting%20System&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=McCusker,%20Gillian%20Young&rft.date=2023-04-24&rft.volume=23&rft.issue=8&rft.spage=4819&rft.epage=4847&rft.pages=4819-4847&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-23-4819-2023&rft_dat=%3Cgale_doaj_%3EA746835365%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2804853125&rft_id=info:pmid/&rft_galeid=A746835365&rfr_iscdi=true |