Loading…

Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System

By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds an...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2023-04, Vol.23 (8), p.4819-4847
Main Authors: McCusker, Gillian Young, Vüllers, Jutta, Achtert, Peggy, Field, Paul, Day, Jonathan J, Forbes, Richard, Price, Ruth, O'Connor, Ewan, Tjernström, Michael, Prytherch, John, Neely III, Ryan, Brooks, Ian M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3
cites cdi_FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3
container_end_page 4847
container_issue 8
container_start_page 4819
container_title Atmospheric chemistry and physics
container_volume 23
creator McCusker, Gillian Young
Vüllers, Jutta
Achtert, Peggy
Field, Paul
Day, Jonathan J
Forbes, Richard
Price, Ruth
O'Connor, Ewan
Tjernström, Michael
Prytherch, John
Neely III, Ryan
Brooks, Ian M
description By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM - two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) - while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS).
doi_str_mv 10.5194/acp-23-4819-2023
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_88accd69fe074e9495809a763e0ce791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746835365</galeid><doaj_id>oai_doaj_org_article_88accd69fe074e9495809a763e0ce791</doaj_id><sourcerecordid>A746835365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3</originalsourceid><addsrcrecordid>eNptks9rFDEcxQdRsFbvHgc8CU6b35kcl9rahYpgrQcvIZN8Z5pldrImGWv_ezO7oi5IDgkvn-8jL7yqeo3RGceKnRu7awhtWItVQxChT6oTLFrUSErY03_Oz6sXKW0QIhxhdlJ9u_xhxtlkPw31KtrsbW3HMLtUb4ODcQRXP_h8X-d7qO8m3_sifFxuajO5ej1lGKLJRbwKEaxJe6Pbx5Rh-7J61psxwavf-2l1d3X55eK6ufn0YX2xumksxzI3rHcgEAisuDKCt1IgR6hEoldMFktLVNfh3lIuDWHWdRJjiwUG5SzCqKOn1frg64LZ6F30WxMfdTBe74UQB21iCTaCbltjrROqByQZKKZ4i5SRggKyIBUuXu8OXukBdnN35Pbef13t3dKsSfliLAv-5oDvYvg-Q8p6E-Y4lbSatIi1nGLC_1KDKW_wUx9yNHbrk9UryURLORULdfYfqiwHW2_DBL0v-tHA26OBwmT4mQczp6TXt5-PWXRgbQwpRej_JMNIL_3RpT-aUL30Ry_9ob8AZMS15Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804853125</pqid></control><display><type>article</type><title>Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System</title><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><source>Alma/SFX Local Collection</source><creator>McCusker, Gillian Young ; Vüllers, Jutta ; Achtert, Peggy ; Field, Paul ; Day, Jonathan J ; Forbes, Richard ; Price, Ruth ; O'Connor, Ewan ; Tjernström, Michael ; Prytherch, John ; Neely III, Ryan ; Brooks, Ian M</creator><creatorcontrib>McCusker, Gillian Young ; Vüllers, Jutta ; Achtert, Peggy ; Field, Paul ; Day, Jonathan J ; Forbes, Richard ; Price, Ruth ; O'Connor, Ewan ; Tjernström, Michael ; Prytherch, John ; Neely III, Ryan ; Brooks, Ian M</creatorcontrib><description>By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM - two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) - while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS).</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-23-4819-2023</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosols ; Algorithms ; Arctic clouds ; Arctic observations ; Bias ; Boundary conditions ; Cloud condensation nuclei ; Cloud condensation nuclei concentrations ; Cloud cover ; Cloud microphysics ; Cloud physics ; Cloudiness ; Clouds ; Condensates ; Condensation nuclei ; Configurations ; Driving conditions ; Dynamics ; Energy balance ; Expeditions ; Force and energy ; Freezing ; General circulation models ; Humidity ; Ice melting ; Liquid water content ; Low altitude ; Lower troposphere ; Mathematical models ; Meteorological conditions ; Modelling ; Moisture content ; Moisture effects ; Performance evaluation ; Physics ; Polar environments ; Precipitation ; Radiation ; Radiative cooling ; Radiometers ; Remote sensing ; Sea ice ; Simulation ; Simulation methods ; Surface energy ; Surface energy balance ; Surface properties ; Surface temperature ; Telecommunications systems ; Thermodynamics ; Troposphere ; Vertical profiles ; Water ; Water content ; Weather forecasting</subject><ispartof>Atmospheric chemistry and physics, 2023-04, Vol.23 (8), p.4819-4847</ispartof><rights>COPYRIGHT 2023 Copernicus GmbH</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3</citedby><cites>FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3</cites><orcidid>0000-0003-1981-9860 ; 0000-0002-5051-1322 ; 0000-0001-9834-5100 ; 0000-0002-8464-7332 ; 0000-0002-6908-7410 ; 0000-0003-4560-4812 ; 0000-0003-1209-289X ; 0000-0003-0156-5276 ; 0000-0002-6483-1159 ; 0000-0002-3596-8287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2804853125/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2804853125?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,861,882,2096,25734,27905,27906,36993,44571,74875</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-220217$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>McCusker, Gillian Young</creatorcontrib><creatorcontrib>Vüllers, Jutta</creatorcontrib><creatorcontrib>Achtert, Peggy</creatorcontrib><creatorcontrib>Field, Paul</creatorcontrib><creatorcontrib>Day, Jonathan J</creatorcontrib><creatorcontrib>Forbes, Richard</creatorcontrib><creatorcontrib>Price, Ruth</creatorcontrib><creatorcontrib>O'Connor, Ewan</creatorcontrib><creatorcontrib>Tjernström, Michael</creatorcontrib><creatorcontrib>Prytherch, John</creatorcontrib><creatorcontrib>Neely III, Ryan</creatorcontrib><creatorcontrib>Brooks, Ian M</creatorcontrib><title>Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System</title><title>Atmospheric chemistry and physics</title><description>By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM - two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) - while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS).</description><subject>Aerosols</subject><subject>Algorithms</subject><subject>Arctic clouds</subject><subject>Arctic observations</subject><subject>Bias</subject><subject>Boundary conditions</subject><subject>Cloud condensation nuclei</subject><subject>Cloud condensation nuclei concentrations</subject><subject>Cloud cover</subject><subject>Cloud microphysics</subject><subject>Cloud physics</subject><subject>Cloudiness</subject><subject>Clouds</subject><subject>Condensates</subject><subject>Condensation nuclei</subject><subject>Configurations</subject><subject>Driving conditions</subject><subject>Dynamics</subject><subject>Energy balance</subject><subject>Expeditions</subject><subject>Force and energy</subject><subject>Freezing</subject><subject>General circulation models</subject><subject>Humidity</subject><subject>Ice melting</subject><subject>Liquid water content</subject><subject>Low altitude</subject><subject>Lower troposphere</subject><subject>Mathematical models</subject><subject>Meteorological conditions</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Moisture effects</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Polar environments</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Radiative cooling</subject><subject>Radiometers</subject><subject>Remote sensing</subject><subject>Sea ice</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Surface energy</subject><subject>Surface energy balance</subject><subject>Surface properties</subject><subject>Surface temperature</subject><subject>Telecommunications systems</subject><subject>Thermodynamics</subject><subject>Troposphere</subject><subject>Vertical profiles</subject><subject>Water</subject><subject>Water content</subject><subject>Weather forecasting</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rFDEcxQdRsFbvHgc8CU6b35kcl9rahYpgrQcvIZN8Z5pldrImGWv_ezO7oi5IDgkvn-8jL7yqeo3RGceKnRu7awhtWItVQxChT6oTLFrUSErY03_Oz6sXKW0QIhxhdlJ9u_xhxtlkPw31KtrsbW3HMLtUb4ODcQRXP_h8X-d7qO8m3_sifFxuajO5ej1lGKLJRbwKEaxJe6Pbx5Rh-7J61psxwavf-2l1d3X55eK6ufn0YX2xumksxzI3rHcgEAisuDKCt1IgR6hEoldMFktLVNfh3lIuDWHWdRJjiwUG5SzCqKOn1frg64LZ6F30WxMfdTBe74UQB21iCTaCbltjrROqByQZKKZ4i5SRggKyIBUuXu8OXukBdnN35Pbef13t3dKsSfliLAv-5oDvYvg-Q8p6E-Y4lbSatIi1nGLC_1KDKW_wUx9yNHbrk9UryURLORULdfYfqiwHW2_DBL0v-tHA26OBwmT4mQczp6TXt5-PWXRgbQwpRej_JMNIL_3RpT-aUL30Ry_9ob8AZMS15Q</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>McCusker, Gillian Young</creator><creator>Vüllers, Jutta</creator><creator>Achtert, Peggy</creator><creator>Field, Paul</creator><creator>Day, Jonathan J</creator><creator>Forbes, Richard</creator><creator>Price, Ruth</creator><creator>O'Connor, Ewan</creator><creator>Tjernström, Michael</creator><creator>Prytherch, John</creator><creator>Neely III, Ryan</creator><creator>Brooks, Ian M</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1981-9860</orcidid><orcidid>https://orcid.org/0000-0002-5051-1322</orcidid><orcidid>https://orcid.org/0000-0001-9834-5100</orcidid><orcidid>https://orcid.org/0000-0002-8464-7332</orcidid><orcidid>https://orcid.org/0000-0002-6908-7410</orcidid><orcidid>https://orcid.org/0000-0003-4560-4812</orcidid><orcidid>https://orcid.org/0000-0003-1209-289X</orcidid><orcidid>https://orcid.org/0000-0003-0156-5276</orcidid><orcidid>https://orcid.org/0000-0002-6483-1159</orcidid><orcidid>https://orcid.org/0000-0002-3596-8287</orcidid></search><sort><creationdate>20230424</creationdate><title>Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System</title><author>McCusker, Gillian Young ; Vüllers, Jutta ; Achtert, Peggy ; Field, Paul ; Day, Jonathan J ; Forbes, Richard ; Price, Ruth ; O'Connor, Ewan ; Tjernström, Michael ; Prytherch, John ; Neely III, Ryan ; Brooks, Ian M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Algorithms</topic><topic>Arctic clouds</topic><topic>Arctic observations</topic><topic>Bias</topic><topic>Boundary conditions</topic><topic>Cloud condensation nuclei</topic><topic>Cloud condensation nuclei concentrations</topic><topic>Cloud cover</topic><topic>Cloud microphysics</topic><topic>Cloud physics</topic><topic>Cloudiness</topic><topic>Clouds</topic><topic>Condensates</topic><topic>Condensation nuclei</topic><topic>Configurations</topic><topic>Driving conditions</topic><topic>Dynamics</topic><topic>Energy balance</topic><topic>Expeditions</topic><topic>Force and energy</topic><topic>Freezing</topic><topic>General circulation models</topic><topic>Humidity</topic><topic>Ice melting</topic><topic>Liquid water content</topic><topic>Low altitude</topic><topic>Lower troposphere</topic><topic>Mathematical models</topic><topic>Meteorological conditions</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Moisture effects</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Polar environments</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Radiative cooling</topic><topic>Radiometers</topic><topic>Remote sensing</topic><topic>Sea ice</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Surface energy</topic><topic>Surface energy balance</topic><topic>Surface properties</topic><topic>Surface temperature</topic><topic>Telecommunications systems</topic><topic>Thermodynamics</topic><topic>Troposphere</topic><topic>Vertical profiles</topic><topic>Water</topic><topic>Water content</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCusker, Gillian Young</creatorcontrib><creatorcontrib>Vüllers, Jutta</creatorcontrib><creatorcontrib>Achtert, Peggy</creatorcontrib><creatorcontrib>Field, Paul</creatorcontrib><creatorcontrib>Day, Jonathan J</creatorcontrib><creatorcontrib>Forbes, Richard</creatorcontrib><creatorcontrib>Price, Ruth</creatorcontrib><creatorcontrib>O'Connor, Ewan</creatorcontrib><creatorcontrib>Tjernström, Michael</creatorcontrib><creatorcontrib>Prytherch, John</creatorcontrib><creatorcontrib>Neely III, Ryan</creatorcontrib><creatorcontrib>Brooks, Ian M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCusker, Gillian Young</au><au>Vüllers, Jutta</au><au>Achtert, Peggy</au><au>Field, Paul</au><au>Day, Jonathan J</au><au>Forbes, Richard</au><au>Price, Ruth</au><au>O'Connor, Ewan</au><au>Tjernström, Michael</au><au>Prytherch, John</au><au>Neely III, Ryan</au><au>Brooks, Ian M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2023-04-24</date><risdate>2023</risdate><volume>23</volume><issue>8</issue><spage>4819</spage><epage>4847</epage><pages>4819-4847</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM - two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) - while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS).</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-23-4819-2023</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-1981-9860</orcidid><orcidid>https://orcid.org/0000-0002-5051-1322</orcidid><orcidid>https://orcid.org/0000-0001-9834-5100</orcidid><orcidid>https://orcid.org/0000-0002-8464-7332</orcidid><orcidid>https://orcid.org/0000-0002-6908-7410</orcidid><orcidid>https://orcid.org/0000-0003-4560-4812</orcidid><orcidid>https://orcid.org/0000-0003-1209-289X</orcidid><orcidid>https://orcid.org/0000-0003-0156-5276</orcidid><orcidid>https://orcid.org/0000-0002-6483-1159</orcidid><orcidid>https://orcid.org/0000-0002-3596-8287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2023-04, Vol.23 (8), p.4819-4847
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_88accd69fe074e9495809a763e0ce791
source DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest); Alma/SFX Local Collection
subjects Aerosols
Algorithms
Arctic clouds
Arctic observations
Bias
Boundary conditions
Cloud condensation nuclei
Cloud condensation nuclei concentrations
Cloud cover
Cloud microphysics
Cloud physics
Cloudiness
Clouds
Condensates
Condensation nuclei
Configurations
Driving conditions
Dynamics
Energy balance
Expeditions
Force and energy
Freezing
General circulation models
Humidity
Ice melting
Liquid water content
Low altitude
Lower troposphere
Mathematical models
Meteorological conditions
Modelling
Moisture content
Moisture effects
Performance evaluation
Physics
Polar environments
Precipitation
Radiation
Radiative cooling
Radiometers
Remote sensing
Sea ice
Simulation
Simulation methods
Surface energy
Surface energy balance
Surface properties
Surface temperature
Telecommunications systems
Thermodynamics
Troposphere
Vertical profiles
Water
Water content
Weather forecasting
title Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Arctic%20clouds%20modelled%20with%20the%20Unified%20Model%20and%20Integrated%20Forecasting%20System&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=McCusker,%20Gillian%20Young&rft.date=2023-04-24&rft.volume=23&rft.issue=8&rft.spage=4819&rft.epage=4847&rft.pages=4819-4847&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-23-4819-2023&rft_dat=%3Cgale_doaj_%3EA746835365%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-4fde60e61959a658760d23706f947ecac29bb1fc357a24cdb711c161e9dc010b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2804853125&rft_id=info:pmid/&rft_galeid=A746835365&rfr_iscdi=true