Loading…
m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade
Melanoma is one of the most deadly and therapy-resistant cancers. Here we show that N 6 -methyladenosine (m 6 A) mRNA demethylation by fat mass and obesity-associated protein (FTO) increases melanoma growth and decreases response to anti-PD-1 blockade immunotherapy. FTO level is increased in human m...
Saved in:
Published in: | Nature communications 2019-06, Vol.10 (1), p.1-14, Article 2782 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Melanoma is one of the most deadly and therapy-resistant cancers. Here we show that N
6
-methyladenosine (m
6
A) mRNA demethylation by fat mass and obesity-associated protein (FTO) increases melanoma growth and decreases response to anti-PD-1 blockade immunotherapy. FTO level is increased in human melanoma and enhances melanoma tumorigenesis in mice. FTO is induced by metabolic starvation stress through the autophagy and NF-κB pathway. Knockdown of FTO increases m
6
A methylation in the critical protumorigenic melanoma cell-intrinsic genes including PD-1 (PDCD1), CXCR4, and SOX10, leading to increased RNA decay through the m
6
A reader YTHDF2. Knockdown of FTO sensitizes melanoma cells to interferon gamma (IFNγ) and sensitizes melanoma to anti-PD-1 treatment in mice, depending on adaptive immunity. Our findings demonstrate a crucial role of FTO as an m
6
A demethylase in promoting melanoma tumorigenesis and anti-PD-1 resistance, and suggest that the combination of FTO inhibition with anti-PD-1 blockade may reduce the resistance to immunotherapy in melanoma.
FTO is an m6A demethylase. Here, the authors show that FTO promotes melanoma tumorigenicity and contributes to resistance to anti-PD1 blockade, while FTO inhibition sensitizes melanoma to anti-PD1 blockade. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-10669-0 |