Loading…

Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions

The substantial increase in the number of daily new cases infected with coronavirus around the world is alarming, and several researchers are currently using various mathematical and machine learning-based prediction models to estimate the future trend of this pandemic. In this work, we employed the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of infection and public health 2020-07, Vol.13 (7), p.914-919
Main Authors: Alzahrani, Saleh I., Aljamaan, Ibrahim A., Al-Fakih, Ebrahim A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c587t-d129982d37209a11db81f2bf6feb008d4ead7c4bdb15ca35e27866dce69adf173
cites cdi_FETCH-LOGICAL-c587t-d129982d37209a11db81f2bf6feb008d4ead7c4bdb15ca35e27866dce69adf173
container_end_page 919
container_issue 7
container_start_page 914
container_title Journal of infection and public health
container_volume 13
creator Alzahrani, Saleh I.
Aljamaan, Ibrahim A.
Al-Fakih, Ebrahim A.
description The substantial increase in the number of daily new cases infected with coronavirus around the world is alarming, and several researchers are currently using various mathematical and machine learning-based prediction models to estimate the future trend of this pandemic. In this work, we employed the Autoregressive Integrated Moving Average (ARIMA) model to forecast the expected daily number of COVID-19 cases in Saudi Arabia in the next four weeks. We first performed four different prediction models; Autoregressive Model, Moving Average, a combination of both (ARMA), and integrated ARMA (ARIMA), to determine the best model fit, and we found out that the ARIMA model outperformed the other models. The forecasting results showed that the trend in Saudi Arabia will continue growing and may reach up to 7668 new cases per day and over 127,129 cumulative daily cases in a matter of four weeks if stringent precautionary and control measures are not implemented to limit the spread of COVID-19. This indicates that the Umrah and Hajj Pilgrimages to the two holy cities of Mecca and Medina in Saudi Arabia that are supposedly scheduled to be performed by nearly 2 million Muslims in mid-July may be suspended. A set of extreme preventive and control measures are proposed in an effort to avoid such a situation.
doi_str_mv 10.1016/j.jiph.2020.06.001
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_88d8193b8dd14298b3e9a33273355ee7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1876034120304937</els_id><doaj_id>oai_doaj_org_article_88d8193b8dd14298b3e9a33273355ee7</doaj_id><sourcerecordid>2414412702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-d129982d37209a11db81f2bf6feb008d4ead7c4bdb15ca35e27866dce69adf173</originalsourceid><addsrcrecordid>eNp9ksmO1DAURSMEogf4ARbISzYJHjI4EkIqFTSU1KglJrGzHPul4iiJ07ZTEj_Ad7fT1ZToDStP9x6_Z98keUVwRjAp3_ZZb-Yuo5jiDJcZxuRJck54VaaYFb-enuY5OUsuvO8xLlmR18-TM0aLvMwZP0_-XFkHSvpgpj0KHSA_O5Aa2fZ-tb35ufuQkhrNctIwGoXMhL7JRRu0cbIxEi1-dW6-7r5sULRqo4KxExqthgEt0eSQWpyDKaB5aYZI6EAOoYugAO4Q96Pcv0ietXLw8PJhvEx-XH38vv2cXt982m0316kqeBVSTWhdc6pZRXEtCdENJy1t2rKFBmOu81h6pfJGN6RQkhVAK16WWkFZS92Sil0muyNXW9mL2ZlRut_CSiPuN6zbC-mCUQMIzjUnNWu41iSnNW8Y1JIxWjFWFAAr6_2RFfsaIV4yBSeHR9DHJ5PpxN4eRMVZFRuJgDcPAGdvF_BBjMYrGAY5gV28oDnJc0IrTKOUHqXKWe8dtKdrCBZrGEQv1jCINQwClyKGIZpe_1vgyfL396Pg3VEA8ckPBpzwysCk4i_GUIT4JuZ__DslFce4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414412702</pqid></control><display><type>article</type><title>Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions</title><source>Elsevier ScienceDirect Journals</source><creator>Alzahrani, Saleh I. ; Aljamaan, Ibrahim A. ; Al-Fakih, Ebrahim A.</creator><creatorcontrib>Alzahrani, Saleh I. ; Aljamaan, Ibrahim A. ; Al-Fakih, Ebrahim A.</creatorcontrib><description>The substantial increase in the number of daily new cases infected with coronavirus around the world is alarming, and several researchers are currently using various mathematical and machine learning-based prediction models to estimate the future trend of this pandemic. In this work, we employed the Autoregressive Integrated Moving Average (ARIMA) model to forecast the expected daily number of COVID-19 cases in Saudi Arabia in the next four weeks. We first performed four different prediction models; Autoregressive Model, Moving Average, a combination of both (ARMA), and integrated ARMA (ARIMA), to determine the best model fit, and we found out that the ARIMA model outperformed the other models. The forecasting results showed that the trend in Saudi Arabia will continue growing and may reach up to 7668 new cases per day and over 127,129 cumulative daily cases in a matter of four weeks if stringent precautionary and control measures are not implemented to limit the spread of COVID-19. This indicates that the Umrah and Hajj Pilgrimages to the two holy cities of Mecca and Medina in Saudi Arabia that are supposedly scheduled to be performed by nearly 2 million Muslims in mid-July may be suspended. A set of extreme preventive and control measures are proposed in an effort to avoid such a situation.</description><identifier>ISSN: 1876-0341</identifier><identifier>EISSN: 1876-035X</identifier><identifier>DOI: 10.1016/j.jiph.2020.06.001</identifier><identifier>PMID: 32546438</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Betacoronavirus ; Coronavirus Infections - epidemiology ; COVID-19 ; Humans ; mARIMA Prediction Model ; Models, Biological ; Models, Statistical ; Pandemic ; Pandemics ; Pneumonia, Viral - epidemiology ; Public Health - methods ; SARS-CoV-2 ; Saudi Arabia ; Saudi Arabia - epidemiology ; Time Factors ; Time Series models</subject><ispartof>Journal of infection and public health, 2020-07, Vol.13 (7), p.914-919</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-d129982d37209a11db81f2bf6feb008d4ead7c4bdb15ca35e27866dce69adf173</citedby><cites>FETCH-LOGICAL-c587t-d129982d37209a11db81f2bf6feb008d4ead7c4bdb15ca35e27866dce69adf173</cites><orcidid>0000-0001-8911-2161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1876034120304937$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3536,27905,27906,45761</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32546438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alzahrani, Saleh I.</creatorcontrib><creatorcontrib>Aljamaan, Ibrahim A.</creatorcontrib><creatorcontrib>Al-Fakih, Ebrahim A.</creatorcontrib><title>Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions</title><title>Journal of infection and public health</title><addtitle>J Infect Public Health</addtitle><description>The substantial increase in the number of daily new cases infected with coronavirus around the world is alarming, and several researchers are currently using various mathematical and machine learning-based prediction models to estimate the future trend of this pandemic. In this work, we employed the Autoregressive Integrated Moving Average (ARIMA) model to forecast the expected daily number of COVID-19 cases in Saudi Arabia in the next four weeks. We first performed four different prediction models; Autoregressive Model, Moving Average, a combination of both (ARMA), and integrated ARMA (ARIMA), to determine the best model fit, and we found out that the ARIMA model outperformed the other models. The forecasting results showed that the trend in Saudi Arabia will continue growing and may reach up to 7668 new cases per day and over 127,129 cumulative daily cases in a matter of four weeks if stringent precautionary and control measures are not implemented to limit the spread of COVID-19. This indicates that the Umrah and Hajj Pilgrimages to the two holy cities of Mecca and Medina in Saudi Arabia that are supposedly scheduled to be performed by nearly 2 million Muslims in mid-July may be suspended. A set of extreme preventive and control measures are proposed in an effort to avoid such a situation.</description><subject>Betacoronavirus</subject><subject>Coronavirus Infections - epidemiology</subject><subject>COVID-19</subject><subject>Humans</subject><subject>mARIMA Prediction Model</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Pandemic</subject><subject>Pandemics</subject><subject>Pneumonia, Viral - epidemiology</subject><subject>Public Health - methods</subject><subject>SARS-CoV-2</subject><subject>Saudi Arabia</subject><subject>Saudi Arabia - epidemiology</subject><subject>Time Factors</subject><subject>Time Series models</subject><issn>1876-0341</issn><issn>1876-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9ksmO1DAURSMEogf4ARbISzYJHjI4EkIqFTSU1KglJrGzHPul4iiJ07ZTEj_Ad7fT1ZToDStP9x6_Z98keUVwRjAp3_ZZb-Yuo5jiDJcZxuRJck54VaaYFb-enuY5OUsuvO8xLlmR18-TM0aLvMwZP0_-XFkHSvpgpj0KHSA_O5Aa2fZ-tb35ufuQkhrNctIwGoXMhL7JRRu0cbIxEi1-dW6-7r5sULRqo4KxExqthgEt0eSQWpyDKaB5aYZI6EAOoYugAO4Q96Pcv0ietXLw8PJhvEx-XH38vv2cXt982m0316kqeBVSTWhdc6pZRXEtCdENJy1t2rKFBmOu81h6pfJGN6RQkhVAK16WWkFZS92Sil0muyNXW9mL2ZlRut_CSiPuN6zbC-mCUQMIzjUnNWu41iSnNW8Y1JIxWjFWFAAr6_2RFfsaIV4yBSeHR9DHJ5PpxN4eRMVZFRuJgDcPAGdvF_BBjMYrGAY5gV28oDnJc0IrTKOUHqXKWe8dtKdrCBZrGEQv1jCINQwClyKGIZpe_1vgyfL396Pg3VEA8ckPBpzwysCk4i_GUIT4JuZ__DslFce4</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Alzahrani, Saleh I.</creator><creator>Aljamaan, Ibrahim A.</creator><creator>Al-Fakih, Ebrahim A.</creator><general>Elsevier Ltd</general><general>The Author(s). Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health Sciences</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8911-2161</orcidid></search><sort><creationdate>20200701</creationdate><title>Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions</title><author>Alzahrani, Saleh I. ; Aljamaan, Ibrahim A. ; Al-Fakih, Ebrahim A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-d129982d37209a11db81f2bf6feb008d4ead7c4bdb15ca35e27866dce69adf173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Betacoronavirus</topic><topic>Coronavirus Infections - epidemiology</topic><topic>COVID-19</topic><topic>Humans</topic><topic>mARIMA Prediction Model</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Pandemic</topic><topic>Pandemics</topic><topic>Pneumonia, Viral - epidemiology</topic><topic>Public Health - methods</topic><topic>SARS-CoV-2</topic><topic>Saudi Arabia</topic><topic>Saudi Arabia - epidemiology</topic><topic>Time Factors</topic><topic>Time Series models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alzahrani, Saleh I.</creatorcontrib><creatorcontrib>Aljamaan, Ibrahim A.</creatorcontrib><creatorcontrib>Al-Fakih, Ebrahim A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of infection and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alzahrani, Saleh I.</au><au>Aljamaan, Ibrahim A.</au><au>Al-Fakih, Ebrahim A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions</atitle><jtitle>Journal of infection and public health</jtitle><addtitle>J Infect Public Health</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>13</volume><issue>7</issue><spage>914</spage><epage>919</epage><pages>914-919</pages><issn>1876-0341</issn><eissn>1876-035X</eissn><abstract>The substantial increase in the number of daily new cases infected with coronavirus around the world is alarming, and several researchers are currently using various mathematical and machine learning-based prediction models to estimate the future trend of this pandemic. In this work, we employed the Autoregressive Integrated Moving Average (ARIMA) model to forecast the expected daily number of COVID-19 cases in Saudi Arabia in the next four weeks. We first performed four different prediction models; Autoregressive Model, Moving Average, a combination of both (ARMA), and integrated ARMA (ARIMA), to determine the best model fit, and we found out that the ARIMA model outperformed the other models. The forecasting results showed that the trend in Saudi Arabia will continue growing and may reach up to 7668 new cases per day and over 127,129 cumulative daily cases in a matter of four weeks if stringent precautionary and control measures are not implemented to limit the spread of COVID-19. This indicates that the Umrah and Hajj Pilgrimages to the two holy cities of Mecca and Medina in Saudi Arabia that are supposedly scheduled to be performed by nearly 2 million Muslims in mid-July may be suspended. A set of extreme preventive and control measures are proposed in an effort to avoid such a situation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32546438</pmid><doi>10.1016/j.jiph.2020.06.001</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8911-2161</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1876-0341
ispartof Journal of infection and public health, 2020-07, Vol.13 (7), p.914-919
issn 1876-0341
1876-035X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_88d8193b8dd14298b3e9a33273355ee7
source Elsevier ScienceDirect Journals
subjects Betacoronavirus
Coronavirus Infections - epidemiology
COVID-19
Humans
mARIMA Prediction Model
Models, Biological
Models, Statistical
Pandemic
Pandemics
Pneumonia, Viral - epidemiology
Public Health - methods
SARS-CoV-2
Saudi Arabia
Saudi Arabia - epidemiology
Time Factors
Time Series models
title Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20the%20spread%20of%20the%20COVID-19%20pandemic%20in%20Saudi%20Arabia%20using%20ARIMA%20prediction%20model%20under%20current%20public%20health%20interventions&rft.jtitle=Journal%20of%20infection%20and%20public%20health&rft.au=Alzahrani,%20Saleh%20I.&rft.date=2020-07-01&rft.volume=13&rft.issue=7&rft.spage=914&rft.epage=919&rft.pages=914-919&rft.issn=1876-0341&rft.eissn=1876-035X&rft_id=info:doi/10.1016/j.jiph.2020.06.001&rft_dat=%3Cproquest_doaj_%3E2414412702%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-d129982d37209a11db81f2bf6feb008d4ead7c4bdb15ca35e27866dce69adf173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414412702&rft_id=info:pmid/32546438&rfr_iscdi=true