Loading…
Deep-Learning for Change Detection Using Multi-Modal Fusion of Remote Sensing Images: A Review
Remote sensing images provide a valuable way to observe the Earth’s surface and identify objects from a satellite or airborne perspective. Researchers can gain a more comprehensive understanding of the Earth’s surface by using a variety of heterogeneous data sources, including multispectral, hypersp...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-10, Vol.16 (20), p.3852 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c253t-e9a74b66160f524d12088a08a1cb9b447febbcb43c13c612c0af17429d409593 |
container_end_page | |
container_issue | 20 |
container_start_page | 3852 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 16 |
creator | Saidi, Souad Idbraim, Soufiane Karmoude, Younes Masse, Antoine Arbelo, Manuel |
description | Remote sensing images provide a valuable way to observe the Earth’s surface and identify objects from a satellite or airborne perspective. Researchers can gain a more comprehensive understanding of the Earth’s surface by using a variety of heterogeneous data sources, including multispectral, hyperspectral, radar, and multitemporal imagery. This abundance of different information over a specified area offers an opportunity to significantly improve change detection tasks by merging or fusing these sources. This review explores the application of deep learning for change detection in remote sensing imagery, encompassing both homogeneous and heterogeneous scenes. It delves into publicly available datasets specifically designed for this task, analyzes selected deep learning models employed for change detection, and explores current challenges and trends in the field, concluding with a look towards potential future developments. |
doi_str_mv | 10.3390/rs16203852 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_88de8c29dddb429a9d79b0c1dc191067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814414508</galeid><doaj_id>oai_doaj_org_article_88de8c29dddb429a9d79b0c1dc191067</doaj_id><sourcerecordid>A814414508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-e9a74b66160f524d12088a08a1cb9b447febbcb43c13c612c0af17429d409593</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkRBqb34Cxa8CVvz2t3EW2mtFiqCj6shm0zWlHZTk63ivze1ok4OM8z34AuTZWcYjSgV6DJEXBFEeUkOshOCalIwIsjhv_k4G8a4RKkoxQKxk-xlCrApFqBC57o2tz7kk1fVtZBPoQfdO9_lz3EH3W1XvSvuvFGrfLaNO8Db_AHWvof8Ebpv0nytWohX-TgB7w4-TrMjq1YRhj99kD3Nrp8mt8Xi_mY-GS8KTUraFyBUzZqqwhWyJWEGE8S5Qlxh3YiGsdpC0-iGUY2prjDRSFlcpx8ZhkQp6CCb722NV0u5CW6twqf0ysnvhQ-tVKF3egWScwNcJ6UxTTJQwtSiQRobjQVGVZ28zvdem-DfthB7ufTb0KX0kqZcdUqDeWKN9qxWJVPXWd8HpdMzsHbad2Bd2o85ZgyzEu0EF3uBDj7GAPY3JkZydz75dz76BZ21ih0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120744718</pqid></control><display><type>article</type><title>Deep-Learning for Change Detection Using Multi-Modal Fusion of Remote Sensing Images: A Review</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Saidi, Souad ; Idbraim, Soufiane ; Karmoude, Younes ; Masse, Antoine ; Arbelo, Manuel</creator><creatorcontrib>Saidi, Souad ; Idbraim, Soufiane ; Karmoude, Younes ; Masse, Antoine ; Arbelo, Manuel</creatorcontrib><description>Remote sensing images provide a valuable way to observe the Earth’s surface and identify objects from a satellite or airborne perspective. Researchers can gain a more comprehensive understanding of the Earth’s surface by using a variety of heterogeneous data sources, including multispectral, hyperspectral, radar, and multitemporal imagery. This abundance of different information over a specified area offers an opportunity to significantly improve change detection tasks by merging or fusing these sources. This review explores the application of deep learning for change detection in remote sensing imagery, encompassing both homogeneous and heterogeneous scenes. It delves into publicly available datasets specifically designed for this task, analyzes selected deep learning models employed for change detection, and explores current challenges and trends in the field, concluding with a look towards potential future developments.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs16203852</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Change detection ; Classification ; data fusion ; Decision making ; Deep learning ; Earth surface ; Environmental monitoring ; Keywords ; Literature reviews ; multi-sensor ; multi-source ; Natural resources ; Neural networks ; Observational learning ; Radar detection ; Radar imaging ; Radar systems ; Remote sensing ; remote sensing images ; Remote sensing systems ; Satellite imagery ; Satellite observation ; Satellites ; Search strategies ; Sensors ; Statistical analysis ; Trends ; Urban planning</subject><ispartof>Remote sensing (Basel, Switzerland), 2024-10, Vol.16 (20), p.3852</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-e9a74b66160f524d12088a08a1cb9b447febbcb43c13c612c0af17429d409593</cites><orcidid>0009-0002-0485-5914 ; 0000-0002-6853-4442 ; 0000-0002-0099-2789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120744718/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120744718?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Saidi, Souad</creatorcontrib><creatorcontrib>Idbraim, Soufiane</creatorcontrib><creatorcontrib>Karmoude, Younes</creatorcontrib><creatorcontrib>Masse, Antoine</creatorcontrib><creatorcontrib>Arbelo, Manuel</creatorcontrib><title>Deep-Learning for Change Detection Using Multi-Modal Fusion of Remote Sensing Images: A Review</title><title>Remote sensing (Basel, Switzerland)</title><description>Remote sensing images provide a valuable way to observe the Earth’s surface and identify objects from a satellite or airborne perspective. Researchers can gain a more comprehensive understanding of the Earth’s surface by using a variety of heterogeneous data sources, including multispectral, hyperspectral, radar, and multitemporal imagery. This abundance of different information over a specified area offers an opportunity to significantly improve change detection tasks by merging or fusing these sources. This review explores the application of deep learning for change detection in remote sensing imagery, encompassing both homogeneous and heterogeneous scenes. It delves into publicly available datasets specifically designed for this task, analyzes selected deep learning models employed for change detection, and explores current challenges and trends in the field, concluding with a look towards potential future developments.</description><subject>Accuracy</subject><subject>Change detection</subject><subject>Classification</subject><subject>data fusion</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Earth surface</subject><subject>Environmental monitoring</subject><subject>Keywords</subject><subject>Literature reviews</subject><subject>multi-sensor</subject><subject>multi-source</subject><subject>Natural resources</subject><subject>Neural networks</subject><subject>Observational learning</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Radar systems</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>Remote sensing systems</subject><subject>Satellite imagery</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Search strategies</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>Trends</subject><subject>Urban planning</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkRBqb34Cxa8CVvz2t3EW2mtFiqCj6shm0zWlHZTk63ivze1ok4OM8z34AuTZWcYjSgV6DJEXBFEeUkOshOCalIwIsjhv_k4G8a4RKkoxQKxk-xlCrApFqBC57o2tz7kk1fVtZBPoQfdO9_lz3EH3W1XvSvuvFGrfLaNO8Db_AHWvof8Ebpv0nytWohX-TgB7w4-TrMjq1YRhj99kD3Nrp8mt8Xi_mY-GS8KTUraFyBUzZqqwhWyJWEGE8S5Qlxh3YiGsdpC0-iGUY2prjDRSFlcpx8ZhkQp6CCb722NV0u5CW6twqf0ysnvhQ-tVKF3egWScwNcJ6UxTTJQwtSiQRobjQVGVZ28zvdem-DfthB7ufTb0KX0kqZcdUqDeWKN9qxWJVPXWd8HpdMzsHbad2Bd2o85ZgyzEu0EF3uBDj7GAPY3JkZydz75dz76BZ21ih0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Saidi, Souad</creator><creator>Idbraim, Soufiane</creator><creator>Karmoude, Younes</creator><creator>Masse, Antoine</creator><creator>Arbelo, Manuel</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-0485-5914</orcidid><orcidid>https://orcid.org/0000-0002-6853-4442</orcidid><orcidid>https://orcid.org/0000-0002-0099-2789</orcidid></search><sort><creationdate>20241001</creationdate><title>Deep-Learning for Change Detection Using Multi-Modal Fusion of Remote Sensing Images: A Review</title><author>Saidi, Souad ; Idbraim, Soufiane ; Karmoude, Younes ; Masse, Antoine ; Arbelo, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-e9a74b66160f524d12088a08a1cb9b447febbcb43c13c612c0af17429d409593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Change detection</topic><topic>Classification</topic><topic>data fusion</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Earth surface</topic><topic>Environmental monitoring</topic><topic>Keywords</topic><topic>Literature reviews</topic><topic>multi-sensor</topic><topic>multi-source</topic><topic>Natural resources</topic><topic>Neural networks</topic><topic>Observational learning</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Radar systems</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>Remote sensing systems</topic><topic>Satellite imagery</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Search strategies</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>Trends</topic><topic>Urban planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saidi, Souad</creatorcontrib><creatorcontrib>Idbraim, Soufiane</creatorcontrib><creatorcontrib>Karmoude, Younes</creatorcontrib><creatorcontrib>Masse, Antoine</creatorcontrib><creatorcontrib>Arbelo, Manuel</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saidi, Souad</au><au>Idbraim, Soufiane</au><au>Karmoude, Younes</au><au>Masse, Antoine</au><au>Arbelo, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning for Change Detection Using Multi-Modal Fusion of Remote Sensing Images: A Review</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>20</issue><spage>3852</spage><pages>3852-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Remote sensing images provide a valuable way to observe the Earth’s surface and identify objects from a satellite or airborne perspective. Researchers can gain a more comprehensive understanding of the Earth’s surface by using a variety of heterogeneous data sources, including multispectral, hyperspectral, radar, and multitemporal imagery. This abundance of different information over a specified area offers an opportunity to significantly improve change detection tasks by merging or fusing these sources. This review explores the application of deep learning for change detection in remote sensing imagery, encompassing both homogeneous and heterogeneous scenes. It delves into publicly available datasets specifically designed for this task, analyzes selected deep learning models employed for change detection, and explores current challenges and trends in the field, concluding with a look towards potential future developments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs16203852</doi><orcidid>https://orcid.org/0009-0002-0485-5914</orcidid><orcidid>https://orcid.org/0000-0002-6853-4442</orcidid><orcidid>https://orcid.org/0000-0002-0099-2789</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2024-10, Vol.16 (20), p.3852 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_88de8c29dddb429a9d79b0c1dc191067 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Change detection Classification data fusion Decision making Deep learning Earth surface Environmental monitoring Keywords Literature reviews multi-sensor multi-source Natural resources Neural networks Observational learning Radar detection Radar imaging Radar systems Remote sensing remote sensing images Remote sensing systems Satellite imagery Satellite observation Satellites Search strategies Sensors Statistical analysis Trends Urban planning |
title | Deep-Learning for Change Detection Using Multi-Modal Fusion of Remote Sensing Images: A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning%20for%20Change%20Detection%20Using%20Multi-Modal%20Fusion%20of%20Remote%20Sensing%20Images:%20A%20Review&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Saidi,%20Souad&rft.date=2024-10-01&rft.volume=16&rft.issue=20&rft.spage=3852&rft.pages=3852-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs16203852&rft_dat=%3Cgale_doaj_%3EA814414508%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-e9a74b66160f524d12088a08a1cb9b447febbcb43c13c612c0af17429d409593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120744718&rft_id=info:pmid/&rft_galeid=A814414508&rfr_iscdi=true |