Loading…

Light-Duty Vehicle Brake Emission Factors

Particulate Matter (PM) air pollution has been linked to major adverse health effects. Road transport still contributes significantly to ambient PM concentrations, but mainly due to the non-exhaust emissions from vehicles. For the first time worldwide, limits for non-exhaust emissions have been prop...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2024-01, Vol.15 (1), p.97
Main Authors: Giechaskiel, Barouch, Grigoratos, Theodoros, Dilara, Panagiota, Karageorgiou, Traianos, Ntziachristos, Leonidas, Samaras, Zissis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Particulate Matter (PM) air pollution has been linked to major adverse health effects. Road transport still contributes significantly to ambient PM concentrations, but mainly due to the non-exhaust emissions from vehicles. For the first time worldwide, limits for non-exhaust emissions have been proposed by the European Union for the upcoming Euro 7 step. For these reasons, interest in brake emissions has increased in the past few years. Realistic emission factors are necessary to accurately calculate the contribution of brake emissions to air pollution but also to estimate the emissions reduction potential of new or existing technologies and improved brake formulations. This paper reviews emission factors from light-duty vehicles reported in the literature, with a focus on those that followed the recently introduced Global Technical Regulation (GTR 24) methodology on brakes in light-duty vehicles. Reduction efficiencies of non-asbestos organic (NAO) pads, brake dust filters, ceramic discs, coated discs, and regenerative braking are also discussed. Finally, the emission factors are compared with roadside measurements of brake emissions and emission inventories worldwide. The findings of this study can be used as an input in emission inventories to estimate the contribution of brakes to air pollution.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos15010097